
  

 

Non-Software Examples of Software Design Patterns 
by 

Michael Duell  

Abstract  

Software design patterns have roots in the architectural patterns of Christopher Alexander, 
and in the object movement. According to Alexander, patterns repeat themselves, since 
they are a generic solution to a given system of forces. The object movement looks to the 
real world for insights into modeling software relationships. With these dual roots, it 
seems reasonable that software design patterns should be repeated in real world objects. 
This paper presents a real world, non software instance of each design pattern from the 
book, Design Patterns - Elements of Reusable Object-Oriented Software [13]. The paper 
also discusses the implications of non-software examples on the communicative power of 
a pattern language, and on design pattern training.  

1. Introduction  

Within the software industry, a growing community of patterns proponents exists. The 
roots of the patterns movement are found in the writings of architect Christopher 
Alexander, who describes a pattern as a generic solution to a given system of forces in 
the world [1]. Alexander's patterns can be observed in everyday structures. Each pattern 
in A Pattern Language[2] includes a picture of an archetypal example of the pattern.  

Since objects were the predominate world view at the time that patterns were embraced 
by the software world, patterns also have roots in the object movement [9]. Unfortunately 
examples of software design patterns are not as abundant as Alexandrian patterns, since 
they represent elegant designs, rather than the designs that people generate initially [13]. 
Access to elegant designs is often limited due to the proprietary nature of much of the 
software being developed today.  

According to Alexander, real world patterns always repeat themselves, because under a 
given set of circumstances, there are always certain fields of relationships which are 
most nearly well adapted to the forces which exist [1]. In software, real world problems 
are either modeled entirely, or real world objects are transformed into hardware and 
software to produce real world results [5]. Since software design patterns have roots in 
both Alexandrian patterns, and in the object movement, it seems logical that software 
design patterns can be found in real world objects. This is not to say that software design 
patterns are necessarily models of the real world objects, but the relationships between 
objects that have been adapted to deal with certain forces can be observed both in the 
"real world" and in software objects. To test this hypothesis, a real world example was 



sought for each of the 23 Gang of Four Patterns [13]. The examples follow in sections 2 
through 4.  

2. Creational Patterns  

Five creational patterns have been documented by the Gang of Four. Examples of these 
creational patterns can be found in manufacturing, fast food, biology and political 
institutions.  

2.1 Abstract Factory Example  

The purpose of the Abstract Factory is to provide an interface for creating families of 
related objects, without specifying concrete classes. This pattern is found in the sheet 
metal stamping equipment used in the manufacture of Japanese automobiles. The 
stamping equipment is an Abstract Factory which creates auto body parts. The same 
machinery is used to stamp right hand doors, left hand doors, right front fenders, left front 
fenders, hoods etc. for different models of cars. Through the use of rollers to change the 
stamping dies, the concrete classes produced by the machinery can be changed within 
three minutes [16].  

 
Figure 1: Stamping Example of the Abstract Factory  

2.2 Builder Example  



The Builder pattern separates the construction of a complex object from its representation, 
so that the same construction process can create different representation. This pattern is 
used by fast food restaurants to construct children's meals. Children's meals typically 
consist of a main item, a side item, a drink, and a toy (e.g., a hamburger, fries, coke, and 
toy car). Note that there can be variation in the contents of the children's meal, but the 
construction process is the same. Whether a customer orders a hamburger, cheeseburger, 
or chicken, the process is the same. The employee at the counter directs the crew to 
assemble a main item, side item, and toy. These items are then placed in a bag. The drink 
is placed in a cup and remains outside of the bag. This same process is used at competing 
restaurants.  

 
Figure 2: Object Interaction Diagram for the Builder using Kid's Meal Example  

2.3 Factory Method Example  

The Factory Method defines an interface for creating objects, but lets subclasses decide 
which classes to instantiate. Injection molding presses demonstrate this pattern. 
Manufacturers of plastic toys process plastic molding powder, and inject the plastic into 
molds of the desired shapes [15]. The class of toy (car, action figure, etc.) is determined 
by the mold.  



 
Figure 3: Object Diagram for Factory Method using Injection Mold Example  

2.4 Prototype Example  

The Prototype pattern specifies the kind of objects to create using a prototypical instance. 
Prototypes of new products are often built prior to full production, but in this example, 
the prototype is passive, and does not participate in copying itself. The mitotic division of 
a cell, resulting in two identical cells, is an example of a prototype that plays an active 
role in copying itself and thus, demonstrates the Prototype pattern. When a cell splits, 
two cells of identical genotype result. In other words, the cell clones itself.  

 
Figure 4: Object Diagram for Prototypeusing Cell Division Example  

2.5 Singleton Example  



The Singleton pattern ensures that a class has only one instance, and provides a global 
point of access to that instance. The Singleton pattern is named after the singleton set, 
which is defined to be a set containing one element. The office of the President of the 
United States is a Singleton. The United States Constitution specifies the means by which 
a president is elected, limits the term of office, and defines the order of succession. As a 
result, there can be at most one active president at any given time. Regardless of the 
personal identity of the active president, the title, "The President of the United States" is a 
global point of access that identifies the person in the office.  

 
Figure 5: Object Diagram for Singleton using Presidency Example  

3. Structural Patterns  

Seven structural patterns have been documented by the Gang of Four. Examples of these 
patterns can be found in hand tools, residential wiring, mathematics, holiday tradition, 
catalog retail, and banking.  

3.1 Adapter Example  

The Adapter pattern allows otherwise incompatible classes to work together by 
converting the interface of one class into an interface expected by the clients. Socket 
wrenches provide an example of the Adapter. A socket attaches to a ratchet, provided that 
the size of the drive is the same. Typical drive sizes in the United States are 1/2" and 1/4". 
Obviously a 1/2" drive ratchet will not fit into a 1/4" drive socket unless an adapter is 
used. A 1/2" to 1/4" adapter has a 1/2" female connection to fit on the 1/2" drive ratchet, 
and a 1/4" male connection to fit in the 1/4" drive socket.  



 
Figure 6: Object Diagram for Adapter using Socket Adapter Example  

3.2 Bridge Example  

The Bridge pattern decouples an abstraction from its implementation, so that the two can 
vary independently. A household switch controlling lights, ceiling fans, etc. is an 
example of the Bridge. The purpose of the switch is to turn a device on or off. The actual 
switch can be implemented as a pull chain, a simple two position switch, or a variety of 
dimmer switches.  

 
Figure 7: Object Diagram for Bridge using Electrical Switch Example  

3.3 Composite Example  

The Composite composes objects into tree structures, and lets clients treat individual 
objects and compositions uniformly. Although the example is abstract, arithmetic 
expressions are Composites. An arithmetic expression consists of an operand, an operator 
(+ - * /), and another operand. The operand can be a number, or another arithmetic 
expression. Thus, 2 + 3 and (2 + 3) + (4 * 6) are both valid expressions.  



 
Figure 8: Object Diagram for Composite using Arithmetic Expression Example  

3.4 Decorator Example  

The Decorator attaches additional responsibilities to an object dynamically. Although 
paintings can be hung on a wall with or without frames, frames are often added, and it is 
the frame which is actually hung on the wall. Prior to hanging, the paintings may be 
matted and framed, with the painting, matting, and frame forming a single visual 
component.  

 
Figure 9: Object Diagram for Decorator using Framed Painting Example  



3.5 Facade Example  

The Facade defines a unified, higher level interface to a subsystem, that makes it easier 
to use. Consumers encounter a Facade when ordering from a catalog. The consumer calls 
one number and speaks with a customer service representative. The customer service 
representative acts as a Facade, providing an interface to the order fulfillment department, 
the billing department, and the shipping department.  

 
Figure 10: Object Diagram for Facade using Phone Order Example  

3.6 Flyweight Example  

The Flyweight uses sharing to support large numbers of objects efficiently. The public 
switched telephone network is an example of a Flyweight. There are several resources 
such as dial tone generators, ringing generators, and digit receivers that must be shared 
between all subscribers. A subscriber is unaware of how many resources are in the pool 
when he or she lifts the hand set to make a call. All that matters to subscribers is that dial 
tone is provided, digits are received, and the call is completed.  

 
Figure 11: Dial Tone Generator Example of Flyweight  

3.7 Proxy Example  



The Proxy provides a surrogate or place holder to provide access to an object. A check or 
bank draft is a proxy for funds in an account. A check can be used in place of cash for 
making purchases and ultimately controls access to cash in the issuer's account. 

 
Figure 12: Object Diagram for Proxy using Bank Draft Example  

4. Behavioral Patterns  

Eleven behavioral patterns have been documented by the Gang of Four. Examples of 
these patterns can be found in coin sorting banks, restaurant orders, music, transportation, 
auto repair, vending machines, and home construction.  

4.1 Chain of Responsibility Example  

The Chain of Responsibility pattern avoids coupling the sender of a request to the 
receiver, by giving more than one object a chance to handle the request. Mechanical coin 
sorting banks use the Chain of Responsibility. Rather than having a separate slot for each 
coin denomination coupled with receptacle for the denomination, a single slot is used. 
When the coin is dropped, the coin is routed to the appropriate receptacle by the 
mechanical mechanisms within the bank.  



 
Figure 13: Object Diagram for Chain of Responsibility using Coin Sorting Example  

4.2 Command Example  

The Command pattern allows requests to be encapsulated as objects, thereby allowing 
clients to be paramaterized with different requests. The "check" at a diner is an example 
of a Command pattern. The waiter or waitress takes an order, or command from a 
customer, and encapsulates that order by writing it on the check. The order is then queued 
for a short order cook. Note that the pad of "checks" used by different diners is not 
dependent on the menu, and therefore they can support commands to cook many different 
items.  

 
Figure 14: Object Interaction Diagram for Command using Diner Example  

4.3 Interpreter Example  

The Interpreter pattern defines a grammatical representation for a language and an 
interpreter to interpret the grammar. Musicians are examples of Interpreters. The pitch of 



a sound and its duration can be represented in musical notation on a staff. This notation 
provides the language of music [14]. Musicians playing the music from the score are able 
to reproduce the original pitch and duration of each sound represented.  

 
Figure 15: Object Diagram for Interpreter using Music Example  

4.4 Iterator Example  

The Iterator provides ways to access elements of an aggregate object sequentially 
without exposing the underlying structure of the object. On early television sets, a dial 
was used to change channels. When channel surfing, the viewer was required to move the 
dial through each channel position, regardless of whether or not that channel had 
reception. On modern television sets, a next and previous button are used. When the 
viewer selects the "next" button, the next tuned channel will be displayed. Consider 
watching television in a hotel room in a strange city. When surfing through channels, the 
channel number is not important, but the programming is. If the programming on one 
channel is not of interest, the viewer can request the next channel, without knowing its 
number.  



 
Figure 16: Object Diagram for Iterator using Channel Selector Example  

4.5 Mediator Example  

The Mediator defines an object that controls how a set of objects interact. Loose coupling 
between colleague objects is achieved by having colleagues communicate with the 
Mediator, rather than with each other. The control tower at a controlled airport 
demonstrates this pattern very well. The pilots of the planes approaching or departing the 
terminal area communicate with the tower, rather than explicitly communicating with one 
another. The constraints on who can take off or land are enforced by the tower. It is 
important to note that the tower does not control the whole flight. It exists only to enforce 
constraints in the terminal area.  

 
Figure 17: ATC Tower Example of Mediator  

4.6 Memento Example  

The Memento captures and externalizes an object's internal state, so the object can be 
restored to that state later. This pattern is common among do-it-yourself mechanics 
repairing drum brakes on their cars. The drums are removed from both sides, exposing 
both the right and left brakes. Only one side is disassembled, and the other side serves as 
a Memento of how the brake parts fit together [8]. Only after the job has been completed 



on one side is the other side disassembled. When the second side is disassembled, the 
first side acts as the Memento.  

 
Figure 18: Object Diagram for Memento using Brake Example  

4.7 Observer Example  

The Observer defines a one to many relationship, so that when one object changes state, 
the others are notified and updated automatically. Some auctions demonstrate this pattern. 
Each bidder possesses a numbered paddle that is used to indicate a bid. The auctioneer 
starts the bidding, and "observes" when a paddle is raised to accept the bid. The 
acceptance of the bid changes the bid price, which is broadcast to all of the bidders in the 
form of a new bid.  

 
Figure 19: Auction Example of Observer  

4.8 State Example  

The State pattern allows an object to change its behavior when its internal state changes. 
This pattern can be observed in a vending machine. Vending machines have states based 
on the inventory, amount of currency deposited, the ability to make change, the item 
selected, etc. When currency is deposited and a selection is made, a vending machine will 



either deliver a product and no change, deliver a product and change, deliver no product 
due to insufficient currency on deposit, or deliver no product due to inventory depletion.  

 
Figure 20: Object Diagram for State using Vending Machine Example  

4.9 Strategy Example  

A Strategy defines a set of algorithms that can be used interchangeably. Modes of 
transportation to an airport is an example of a Strategy. Several options exist, such as 
driving one's own car, taking a taxi, an airport shuttle, a city bus, or a limousine service. 
For some airports, subways and helicopters are also available as a mode of transportation 
to the airport. Any of these modes of transportation will get a traveler to the airport, and 
they can be used interchangeably. The traveler must chose the Strategy based on tradeoffs 
between cost, convenience, and time.  

 
Figure 21: Object Diagram for Strategy using Airport Transportation Example  

4.10 Template Method Example  



The Template Method defines a skeleton of an algorithm in an operation, and defers some 
steps to subclasses. Home builders use the Template Method when developing a new 
subdivision. A typical subdivision consists of a limited number of floor plans, with 
different variations available for each floor plan. Within a floor plan, the foundation, 
framing, plumbing, and wiring will be identical for each house. Variation is introduced in 
the latter stages of construction to produce a wider variety of models.  

 
Figure 22: Basic Floor Plan Example of Template Method  

4.11 Visitor Example  

The Visitor pattern represents an operation to be performed on the elements of an object 
structure, without changing the classes on which it operates. This pattern can be observed 
in the operation of a taxi company. When a person calls a taxi company he or she 
becomes part of the company's list of customers. The company then dispatches a cab to 
the customer (accepting a visitor). Upon entering the taxi, or Visitor, the customer is no 
longer in control of his or her own transportation, the taxi (driver) is.  

 
Figure 23: Object Interaction Diagram for Visitor using Taxi Cab Example  

5. Implications  



Non-software examples of each of the software design patterns cataloged by the Gang of 
Four have been shown to exist. One might now wonder about the practical implications 
of these examples. These non-software examples are useful in increasing the 
communicative power of the pattern language and as aids to learning the patterns.  

5.1 Increasing the Communicative Power of the Pattern Language  

Alexander had hoped that true patterns would enter a common language that all could 
share [2]. Within the software design community, patterns are seen as a way to develop a 
set of languages to streamline communication between colleagues [4,17]. Patterns are 
expected to provide a vocabulary for discussing structures larger than modules, 
procedures, or objects [10].  

One crucial element of a language is the mental imagery associated with symbols of the 
language. In a language, a given configuration of symbols has meaning only if one can 
grasp its content, which involves mentally representing it [7]. The importance of mental 
imagery to pattern languages was not lost on Alexander, who stated that a language was 
not morphologically complete until the types of buildings that it generates could be 
visualized concretely [1]. In software design, Richle and Züllighoven recognized the 
importance of concrete examples in guiding our perception of the application domain 
[18].  

If software design patterns are to become a common language among programmers, 
shared meaning is essential. If design decisions are communicated, but not understood, 
designers are forced to make missing assumptions to complete the job [19]. 
Commonplace examples facilitate understanding, because in order to understand anything, 
people must find the closest item in memory to which it relates [20]. The projects at AG 
Communication Systems that make extensive use of patterns often use non-software 
examples to illustrate the relationships at work in the patterns. The examples help provide 
a common understanding between designers. By establishing common understanding 
early in the design process, communication between designers is facilitated throughout 
the project life cycle.  

5.2 Non-Software Examples as Aids to Learning Patterns  

Students require examples whenever new concepts are presented. This was evident in the 
evaluation of a course in patterns offered at AG Communication Systems and has also 
been documented by others [12]. When learning something new, the student naturally 
tends to exploit prior knowledge in an effort to understand the new concepts [6]. For this 
reason, many examples should be included when students are first exposed to software 
design patterns [12]. Specific examples should be ones with which the student is 
acquainted, but not expert [3]. Providing acquaintance examples does not increase the 
new material that must be learned. At the same time, choosing an example outside of a 
student's expertise keeps the student from getting so involved in the example that the 
point of the new material is missed. Since patterns must ultimately reside in one's own 



mind [11], using examples that are common to a large cross section of people, training 
material can build on examples already committed to memory.  

6. Conclusion  

The repetition of software design patterns in non-software examples is evidence that 
patterns are not limited to a specific domain. Instances of these patterns in everyday 
objects can benefit software designers, even though the examples are not expressed in a 
programming language. The examples presented in this paper are intended to be ones that 
are familiar to a large cross section of people (although some may be culturally biased 
towards North Americans). By drawing on common experience, such examples facilitate 
understanding of specific design patterns, and thus improve communication and serve as 
an aid to learning the patterns.  

7. Acknowledgments  

The Author gratefully acknowledges Brandon Goldfedder, of the Dalmatian Group, 
Linda Rising, of AG Communication Systems, Alistair Cockburn, of Humans and 
Technology, and Ralph Johnson of the University of Illinois, Urbana for their useful 
comments on this paper.  

8. References  

1. Alexander, C. The Timeless Way of Building. Oxford University Press, 1979.  
2. Alexander, C., et al. A Pattern Language. Oxford University Press, 1977.  
3. Anthony, D. "Patterns for Classroom Education", in Pattern Languages of 

Program Design II, Addison-Wesley, 1996.  
4. Berczuk, S. "Finding solutions through pattern languages", Computer, Vol. 27, 

No. 12. December, 1994.  
5. Booch, G. "Object Oriented Design" in Tutorial on Software Design Techniques, 

pp. 420-437, IEEE Computer Society, 1984.  
6. Carroll, J. "The Nurnberg funnel: Designing minimalist instruction for practical 

computer skill", MIT Press, 1990.  
7. Chierchia, G. and McConnel-Ginnet, S. Meaning and Grammar: An Introduction 

to Semantics. MIT Press, 1990.  
8. Chilton, Chilton's Auto Repair Manual, Chilton Book Company, 1985.  
9. Coplien, J. "Broadening beyond objects to patterns and to other paradigms", 

Position statement for the ACM Workshop on Strategic Directions in Computing 
Research, MIT, June 14-15, 1996.  

10. Coplien, J. "Idioms, Patterns, and Other Architectural Literature", IEEE Software, 
November, 1996.  

11. Cunningham W., Johnson, R., Introduction to Pattern Languages of Program 
Design, Addison-Wesley, 1995.  

12. DeBruler, D. "A Generative Pattern Language for Distributed Processing", in 
Pattern Languages of Program Design, Addison-Wesley, 1995.  



13. Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design Patterns - Elements of 
Reusable Object-Oriented Software. Addison-Wesley, 1995.  

14. Leonhardt, C. Discovering Music Together 7, California State Department of 
Education, 1967.  

15. President and Fellows of Harvard College, Good Time Toy Company, Publishing 
Division, Harvard Business School, 1986.  

16. Hill, C.W.L. "Toyota: The Evolution of Toyota's Production System" in Cases in 
Strategic Management, Houghton Mifflin, 1993.  

17. OOPSLA '95 "Patterns: Cult to Culture?", Panel Discussion in the Addendum to 
the Proceedings. ACM Press, 1996.  

18. Richle, D, Züllighoven, H. "A Pattern Language for Tool Construction and 
Integration Based on the Tools and Materials Metaphor", in Pattern Languages of 
Program Design, Addison-Wesley, 1995.  

19. Ross, D., and Schoman Jr., K. "Structured Analysis for Requirements Definition," 
IEEE Transactions on Software Engineering, Vol. SE3, No 1., January, 1977.  

20. Schank, R. "Tell Me a Story: A New Look at Real and Artificial Memory", Charles 
Scribner's Sons, 1990.  

"Non-Software Examples of Software Design Patterns," Object Magazine, Vol. 7, No. 5, 
July 1997, pp. 52-57. 

©1997 SIGS Publications, Inc., used by permission. 

 

1-888-888-AGCS 
www.agcs.com  

© 1998 AG Communication Systems  


