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3.5 Further Reading

Robot Learning: Making
Sense of Raw Sensor

On robot sensors: Johann Borenstein, H.R. Everett and Ligiang Feng, Navi-
gating Mobile Robots, AK Peters, Wellesley MA, 1996,

. On robot sensors and robot actuators: Arthur Critchlow, Introduction to
" Robotics, Macmillan, New York, 1985.

« For specific information on sonar sensors see [Lee 95], [L.eonard et al. 90].

« For information regarding laser range finders see http: //www. z£-usa. com.

Summary. This chapter introduces fundamental concepts of robot learn-
ing and machine learning, discusses commonly used mechanisms such
as reinforcement learning and connectionist approaches, and presents
three case studies of mobile robots that can learn.

4.1 Introduction

Section 4.1 of this chapter discusses the fundamental principles that constitute
the robot learning problem, and relates the robot learning problem to the ma-
chine learning problem. This section is fairly abstract, and introduces general
definitions only.

Section 4.2 is more practical, and explains some commonly used mechanisms
of reinforcement learning in mobile robots. This section also gives references,
where more detailed information about the discussed algorithms can be found.

The chapter concludes with three case studies of learning robots and an ex-
ercise. The case studies give examples of self-supervised learning, supervised
learning and unsupervised learning. The exercise is for your own enjoyment —
see whether you can do it!

4.1.1 Motivation

Learning establishes in an agent a procedure, a capability or knowledge that was
not available before, at the design stage. Learning is unnecessary for implement-
ing capabilities that are completely understood, and can be implemented using a
fixed, “hardwired” structure. However, if such a fixed structure cannot be iden-
tified at the design stage, learning is a way to establish the desired competence
later, through interaction with the environment.

There are many reasons why it may be impossible to implement a competence
at the design stage. There may be incomplete knowledge of task, agent or envi-
ronment. We may not know the environment the agent is to operate in, or the
task it is to perform. We may also not know the precise properties of the agent’s
sensors and actuators, any slight defects or idiosyncrasies.

43
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Another reason for not being able to implement a competence at the design
stage would be that environment, task or agent are known to change over time, in
unpredictable ways. In environments inhabited by humans, for instance, objects
can change their position at any time (moving furniture), object properties may
change (painting the walls), or general environmental conditions may change
(switching light on and off). The task may change as the agent is pursuing a high
level goal that involves achieving various different subgoals. And finally, the
agent may change in unpredictable ways, t0o0 — sensor and actuator character-
istics of robots, for instance, change with decreasing battery charge, or changes
in temperature and humidity. ALDER (see figure 4.14) had the irritating habit
of curving slightly left when instructed to move straight, only to start curving
right once the batteries ran low. It was impossible therefore to compensate for
its inability to move straight, using a hardwired control strategy.

Finally, we (that is the human designers) may be unable to implement a suit-
able fixed conirol structure at the design stage, because we perceive the world
differently to a robot. We refer to this as the problem of perceptual discrepancy.
We sometimes simply don’t know what the best control strategy would be.

Here is an example for the problem of perceptual discrepancy. Most people
would think that good landmarks for a mobile robot navigating in an office-type
environment would be doors. Doors are highly visible from long distances, and
at varying angles. They are designed to be detected easily. However, they are
designed to be detected easily &y humans — experiments show that for a robot
it is far easier to detect the slightly protruding door frames, rather than the doors
themselves. The frames reflect sonar bursts very well, and shine like beacons in
the darkness; and yet for a human door frames are completely inconspicuous.

Nothing ever looks exactly the same the second time. Some objects change
their appearance over time (like living beings), sometimes environmental condi-
tions are different (e.g. lighting), or the viewing perspective is different. Gener-
alisation — a form of learning — can help to identify the salient features of an
object, whilst ignoring the changeable ones.

It is for these reasons that we are interested in adding a learning capability to a
mobile robot. Learning will enable robots to acquire competences that cannot be
implemented by the human designer at the design stage, for any of the reasons
given above.

4.1.2 Robot Learning versus Machine Learning

The Metal Skin Metaphor Consider a mobile robot like FortyTwo, shown in fig-

ure 3.17. This 16-sided robot possesses a metal skin which separates the interior
of the robot from the “world out there”, the “real world™ (referred to simply as
the “world” from now on). Embedded in this metal skin are the robot’s sensors,
for example the sonars and IR sensors.

Some properties of the world are perceived by the robot’s sensors, and made
available to the inside — that was lies inside the metal skin of the robot — as
electrical signals. For example, some property of the world that made a sonar
burst retum to the robot after 4 milliseconds arrives at the inside in the form of
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a signal saying “66 em”. The latter signal is not equivalent to the former, it is
merely one of many possible sensations arising from the state of the world.

The metal skin separates the world from the inside of the robot, and the metal
skin metaphor allows us to distinguish between the robot learning problem and
the machine learning problem, )

The robot learning problem addresses the question of making a robot perform
certain tasks in the world successfully. The machine learning problem, on the
other hand, addresses the problem of how to obtain one well defined go’al state
from the current well defined system state. The machine learning problem is
what goes on inside the metal skin, whereas the robot learning problem sees
robot, environment and task as one inseparable entity (see figure 4.1).

True
perceived state ' World

State

conirot function ¢

Actuator
Commands

FIG. 4.1. THE ROBOT LEARNING PROBLEM, THE TRUE STATE OF THE WORLD 1S INACCESSIBLE
TO THE ROBOT - ONLY THE PERCEIVED STATE IS AVAILABLE TO THE LEARNING PROCESS

The trL}e state of the world is transformed, by some unknown function g, into
tl_le perce.wed state of the world. This perceived state of the world can be asso-
ciated with actions through a control function f, which is modifiable through

: learning. Changing f is the machine learning problem, which is the subject of
the following discussion.

A More Formal Description of Machine Learning Every learning process has

some “goal”, and the first consideration is how to define that goal.

Because we only have access to the perceived state of the world, rather than
the true state of the world “out there”, the most precise definition for goals is in
terms of perceived states, i.e. sensor states.

However, it is not always possible to do so, because often there is no one-to-
one mapping between some desired behaviour of the robot in the world and the
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perceived state of the world. Typically, during the execution of actions the same
perceived states may occur many times, so that it is impossible to detect the
goal behaviour by detecting a goal perceived state of the world. In those cases,
qualitative descriptions of the goal have to suffice, which makes the analysis of
the learning system more difficult. ‘

Assuming that G is an identifiable goal state, and X and ¥ are two different
perceived states of the world, the machine learning problem can be formally
described by

G:X YR, @.1

interpreted as “if the robot finds itself in a state satisfying co.ndition X ,‘then
the goal of reaching a state satisfying condition ¥ becomes active, for which a
reward R is received.” o

For example, the goal of recharging a low battery can be represented in this
way, by setting

X = “Battery level low”,
¥V = *“Robot is connected to battery charger”, and
R =100.

Given a set of such goals, we can define a quantitative measure of robot. per-
formance such as the proportion of times that the robot successfully achieves
condition Y given that condition X has been encountered, or the sum of the re-
wards it receives over time. If we wish, we might further elaborate our measure
to include the cost or delay of the actions leading from condition X to condi-
tion Y.

Given this definition of robot performance telative to some set of goals G,
we can say that the robot learning problem is to improve robot p_erformance
through experience. Thus, robot learning is also relative to. the particular go‘als
and performance measure. A robot learning algorithm that is successful relative
to one set of goals might be unsuccessful with respect to another. Of course we
are most interested in general-purpose learning algorithms that enable the robot
to become increasingly successful with respect to a wide variety of goal sets.

Characterisation of the Machine Learning Problem by Target Function

We said above that the machine learning problem can be described as the prob-
lem of acquiring the policy that will yield the maximum cumulat.ive reward, as
the agent moves from system state to system state. Using the descnpt?rs s for the
system’s current state (s € S, with S being the finite set of all pos§1ble sta}tes),
a the action selected (o € A4, with A being the finite set of all possible actm_ns)
and V being the expected discounted future reward, different machine leamning
scenarios can be described as follows. .

The simplest situation would be to learn a control function f filrectly, from
training examples corresponding to input-output pairs of f (equation 4.2).

f:8 - A (4.2)
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One example of a system that learns f directly is Pomerleau’s ALVINN Sys-
tem ([Pomerleau 93]). It learns the control function f for steering a vehicle. The
system learns from training data obtained by watching a human driver steer the
vehicle for a few minutes. Each training example consists of a perceived state
(a camera image of the road ahead), along with a steering action (obtained by
observing the human driver). A neural network is trained to fit these examples.
The system has successfully leamned to drive on a variety of public roads.

Another example of this situation is given in case study 2 on p. 74, where
FortyTwo learns several sensor-motor competences by observing the actions of
a human trainer.

In other cases, training examples of the function £ might not be directly avail-
able. Consider for example a robot with no human trainer, with only the ability to
determine when the goals in its set (7' are satisfied and what reward is associated
with achieving that goal. For example, in a navigation task in which an initially
invisible goal location is to be reached, and in which the robot cannot exploit
any guiding information present in the environment for navigation, a sequence
of many actions is needed before the task is accomplished, However, if it has no
external trainer to suggest the correct action at each intermediate state, its only
training information will be the delayed reward it eventually achieves when the
goal is satisfied through trial and error. In this case, it is not possible to learn the
function f directly because no input-output pairs of f are available,

One common way to address this problem is t¢ define an auxiliary function
QS x A — V,an evaluation function of the expected future reward V,
that takes into account system state s and the action taken (a). This method,
J-learning, is discussed in detail in section 4.2 of this chapter.

Using @, the immediate feedback (which is unavailable) is replaced by the
internal predictions of how well the agent is going to do.

There are further general categories of the machine learning problem: The
robot could leam to predict the next perceived state s’ of the world, given it
takes an specific action a in state s: NextState : s X a ~» &', where &' is
the state resulting from applying action a to state s. One very uvseful prop-
erty of NewxtState is that it is task-independent and can support any learn-
ing process. An example where prediction is successfully applied is given in
[OSullivan et al. 95).

Finally, the robot could learn to map from taw sensory input and actions to
a useful representation of the robot’s state, Perceive : Sensor® x a* — s.
This corresponds to learning a useful state representation, where the state s is
computed from possibly the entire history of raw sensor inputs Sensor*, as well
as the history of actions performed a*. Again, Perceive is task-independent and
can be used to support any learning application.

Characterisation of the Machine Learning Problem

by Training information There are three major classes of training informa-
tion that can be used to control the learning process: supervised, self-supervised
and unsupervised.



48

Mobile Robotics: A Practical Introduction

In supervised learning, training information about values of the target con-
trol function are presented to the learning mechanism externally. A prototypical
example is the supervised training data obtained from the human trainer for the
ALVINN system described above. The backpropagation algorithm for training
artificial neural networks (see p. 63) is one common technique for supervised
learning. The training information provided in supervised control is usually an
example of the action to be performed, as in ALVINN or case study 2 (p. 74).

In self-supervised learning, the actual learning mechanism is the same as in
supervised learning. However, the external feedback given by the trainer in the
supervised case is replaced by internal feedback, supplied from an independent,
internal control structure. In reinforcement learning, discussed in section 4.2
below, this is the “critic”. In case study 1 (p. 69) this is the “monitor”.

Finally, unsupervised learning clusters incoming information without using
input-output pairs for training, but instead exploiting the underlying structure of
the input data. Kohonen’s self-organising feature map is a well known example
of an unsupervised learning mechanism ([Kchonen 88]). Unsupervised learning,
i.e. cluster analysis, has an important role in optimising the robot’s organisa-
tion of sensory (training) data. For example, unsupervised learning can identify
clusters of similar data points, enabling the data to be represented in terms of
orthogonal (highly characteristic) features, without the user knowing nor spec-
ifying what those features are. This reduces the effective dimensionality of the
data, enabling more concise data representation and supporting more accurate
supervised learning. An example of such an application is case study 3 on p. 80.

41.3 Further Reading on the Robot Learning Problem

« Ulrich Nehmzow and Tom Mitchell, The Prospective Student’s Introduction
to the Robot Learning Problem, Technical Report UMCS-95-12-6, Manch-
ester University, Department of Computer Science, Manchester, 1995 (avail-
able at ftp://ftp.cs.man.ac.uk/pub/TR/UMCS-95-12-6.ps. Z.

4.2 Learning Methods in Detail

4.2.1 Reinforcement Learning

fntroduction

“IThe term reinforcement learning covers techniques of] learning by
trial and error through performance feedback, i.e. from feedback that
evalnates the behaviour, ...but does not indicate correct behaviour”
({Sutton 91]). '

“Fixamples of optimal solutions are not provided during training”
([Barto 951).

Usually, the form this performance feedback takes is a simple “good/bad™ sig-
nal ai the end of a sequence of actions, for example after finally having reached
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a goal location, grasped an object, etc. This type of situation is common in -
robotics, and reinforcement learning can therefore be applied to many robotics
tasks,

Reinforcement learning can be viewed as an optimisation problem, whose
goal it is to establish a control policy that obtains maximum reinforcement, from
whatever state the robot might be in. This is shown in figure 4.2.

Sensory Perceptions Control Actions
Policy

Agent

Reinforcement
Signal

Critic

FIG. 4.2. THE REINFORCEMENT LEARNING SCENARIO. PERFORMING ACTIONS IN THE WORLD,
THE AGENT SEEKS TO MAXIMISE CUMULATIVE REWARD.

Reinforcement learning techniques are particularly suitable for robotic ap-
plications in which mistakes of the robot are not immediately fatal and where
some sort of evaluation function of the robot’s performance exists. Reinforce-
ment learning uses an overall performance measure (the reinforcement) to con-
ol the leaming process ([Barto 90] and [Torras 91]), in this it differs from
supervised learning schemes (for example certain kinds of connectionist com-
puting architectures), which use specific target values for individual units. This
property can be particularly useful for robotics, where often only the overall de-
sired behaviour of the robot is known; however at the same time this can also be
a problem, as it can be difficult to establish which parameter within the controller

_ to alter in order to increase the reinforcement.

It i§ through this performance feedback that a mapping from state (the repre-
sentation of a particular situation) to action is learned.

[Sutton 91] gives the following overview of reinforcement learning architec-
tures for intelligent agents:

* Folicy only architecture, which is the simplest architecture. Here, the policy
of the agent is the only modifiable structure. These architectures work well
only if the rewards are distributed around a baseline of zero (that is posi-
tive teinforcement is a positive number, negative reinforcement a negative
number, they can’t both be positive, with the former being bigger than the
latter).

* Reinforcement comparison techniques use a prediction of the reward as the

baseline and are thus able to cope with rewards distributed around a non-
zero baseline.
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» The Adaptive Heuristic Critic architecture (see below fqr a detailed discus-
sion) uses a predictor of return (the long-term cumulative reward), not_ re-
ward, to take non-immediate rewards into account. Neither of the previous
two architectures can do this. _ _

e In @-learning (again, see below) the predicted return is a function not only
of state, but also of the action selected. Finally, .

o Dyna architectures are reinforcement learning architectures tha}t contain an
internal world model. For each single step of selecting an action and per-
forming it in the real world, Dyna architectures perform another k learning
steps using the world model (k is an integer number).

Reinforcement Learning Can Be Slow [Sutton 91] reports thgt ina simul'anon on
path finding where start and goal location are 16 squares in a 9x 6 grid apart,
it takes a Dyna-adaptive heuristic critic four steps in the simulated world and
‘another 100 steps (k = 100) per each of those four steps to find ‘the path. If
a new obstacle is placed in the way, the new path is found in a “very slow
process. He also presents a simulation of a Dyna-Q system that has to find a
path of length 10 (squares). This takes 1000 time steps, and anot.her SOQ after an
obstacle is moved in the way. At k& = 10 this means 100 steps in the simulated
environment, and another 80 to find a new path. For a real robot this can be Foo
slow a learning rate. The only cost to be paid in simulation is that of computing
time; in robotics however the cost function is a different one: apart from the
fact that due to their battery capacity robots only operate for a certain !ength of
time, certain competences such as obstacle avoidance have to be acq}urec.l very
quickly in order to ensure safe operation of the robot. The conclusion is: for
mobile robotics it is crucial that the learning algorithm is fast (on the slow speed
of reinforcement learning see also [Brooks 91a]).

The fact that reinforcement learning can be extremely slow is shown by other
researchers, too. [Prescott & Mayhew 92} simulate the AIVRU mobile robot a'nd
use a reinforcement learning algorithm similar to the one described by Watkms
{([Watkins 89]). The sensor input space of the simulated agent is a continuous
function, simulating a sensor that gives distance and angle to the nearest obsta-
cle. The simulated world is 5 m x 5 m in area, the simulated robot‘ 30 cmx 30crn.
Without learning, the agent runs into obstacles in 26.5% of all simulation steps,
and only after 50,000 learning steps this rate drops to 3.25%. . '

[Kaelbling 90] compares several algorithms and their performances in asim-
ulated robot domain. The agent has to stay away from obsiacles (negative re-
inforcement is applied if it hits an obstacle), it receives posi.tive reinforcement
if it moves near a light source. Kaelbling reports that gll remforcemen? learn-
ing algorithms investigated (Q)-learning, interval estimation plus ¢-learning and
adaptive heuristic critic plus interval estimation) suffered frc?m the fact that the
agent often acquired an appropriate strategy only very late in the run, because
it did not come near the light source in the early stages of the learning process
and thus did not receive positive reinforcement. After 10,000 runs, the differ-
ent algorithms obtained average reinforcerent values_of 0.16 (Q -Ieal_'[}mg), 0.'18
(interval estimation plus @-learning) and 0.37 (adaptive heuristic critic plus in-
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terval estimation). A hand-coded “optimal” controller obtained 0.83. As in the
case mentioned earlier ([Prescott & Mayhew 92]), learning took a long time, and
the achieved performance was far below optimal performance.

Slow learning rates, finding the appropriate critic for the reinforcement learn-
ing architecture and determining how to alter controller outputs in order to im-
prove performance are the main problems when implementing reinforcement
learning on robots ([Barto 90]). Another “problem that has prevented these ar-
chitectures from being applied to more complex control tasks has been the in-
ability of reinforcement learning algorithms to deal with limited Sensory input.
That is, these learning algorithms depend on having complete access to the state
of the task environment” ([Whitehead & Ballard 90]). For robotics applications
this is unrealistic and extremely limiting, and there are far more simulations
of reinforcement learning architectures than there are implementations on real
robots. Two examples of robots nsing reinforcement learning are given below.

Two Examples of Robots Using Reinforcement Learning The mobile robot
OBELIX [Mahadevan & Connell 91] uses reinforcement learning {&-learning)
to acquire a box-pushing skill. In order to overcome the credit assignment prob-
lem!, the overall task of box-pushing is divided into three subtasks: box-finding,
box-pushing and unwedging. These three tasks are implemented as independent
behaviours within a subsumption architecture, box-finding being the lowest level
and unwedging being the highest level. Obelix has eight ultrasonic sensors and
one infrared sensor, in addition to that the robot can monitor the motor supply
current (which gives an indication whether the robot is pushing against a fixed
obstacle). Instead of using the raw data, Mahadevan and Connell quantise it into
an 18-bit-long vector which is then reduced to nine bits by combining several
bits. This 9-bit input vector is used as an input to the (}-learning algorithm. The
possible motor actions of Obelix are restricted to five: forward, left turn, right
turn, sharp left turn and sharp right turn. Input information to OBELIX’ learn-
ing controller is small, and uses preprocessed range data, where sonar scans are
coded into “range bins”.

Their experimental results confirme that Q-learning may require a large num-
ber of learning steps: After a relatively long training time of 2000 learning steps,
the find-box behaviour obtained an average value of reward of 0.16, whereas a
hand-coded box-finder obtained ca. 0.25,

The second example is that of the walking robot GENGHIS that learns to co-
ordinate its leg movements so that a walking behaviour is achieved
{[Maes & Brooks 90]). Unlike [Brooks 86a], who determines the arbitration
between behaviours by hand, in GENGHIS the “relevance” of a particular be-
haviour is determined through a statistical learning process. The stronger the
correlation between a particular behaviour and positive feedback, the more rel-
evant it is. The more relevant a behaviour is in a particular context, the more
likely it is to be invoked. In GENGHIS’ case positive feedback signals are re-
ceived from a trailing wheel that serves as a forward motion detector, and nega-

! How does one correctly assign credit or blame to an action when its consequences unfold over
time and interact with the consequences of other actions ([Barto 900)?
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tive feedback is received from two switches mounted on the bottom of the robot
{the switches detect when the robot is not lifted from the ground). ‘

The speed of leamning is strongly influenced by the size of the search space (1.n
this case the space of possible motor actions), that is the amount of search thaEt is
required before the first positive reinforcement is obtained. [Kaelb'hng 90] writes
that in experiments with the mobile robot SPANKY, wh‘ose task it was .to.move
towards a light source, the robot only learned to do this succes-squy 1_f l.t was
helped in the beginning, so that some positive feedback was received. Slm}l'fnr'ly,
in GENGHIS’ case the search space is small enough to give the ro'bot positive
feedback at an early stage. This is equally true for the robot learning example
given later in case study 1. :

Reinforcement Learning Architectures

Q-Learning In many learning applications the goal is to establish a control policy

that maps a discrete input space onto a discrete output space such that maximum
cumulative reinforcement (reward) is obtained. (@-learning is one mechanism
that is applicable to such learning situations.

Assuming that we have a set of discrete states s € 5 (“state” h!ere refer's to
a specific constellation of relevant parameters that affect the ropot 8 op?,ratlon,
e.g. sensor readings, battery charge, physical location, c?tc., with S bem_g the
finite set of all possible states), and a discrete set of actions a E“A ‘(A :s the
finite space of all possible actions) that the robot might perfornfl {“‘action .here
refers to possible responses of the robot, e.g. movement, acoustic ogtput, visual
output, etc), it can be shown that (J-learning converges to an optimal control
procedure ([Watkins 897).

The basic idea behind ?-leaming is that the learning algorithm leams the
optimal evaluation function over the entire state-action space S X A. The @
function provides a mapping of the form Q) : § x A -+ V, where V is thr% value,
the *“future reward” of performing action a in state s. Provided the optimal Q)
function is learned, and provided the partitioning of action space and robot state
space does not introduce artefacts or omits relevant information, Fhe robo‘g then
knows precisely which action will yield the highest future reward in a particular
situation s. ’

The function (s, a) of the expected future reward, obtained after taking ac-
tion @ in state s is learned through trial and error according to equation 4.3.

Qt-i-l(ss a) « Qt(31 a’) + ﬁ(?’ + AE(S) - Qt(S, a') ’ (43)

where 3 is the leaming rate, r is the reward or punishment resulting from the
action ¢ taken in state &, A is a discount factor (0 < A < 1) which reduf‘,t.as the
influence of expected future rewards, and E{s) = maz{((s,a)) the utility of
state s resulting from action «, using the ) function that has been learned so_ far.

One example of the application of (J-learning to robot learning has been given
above (OBELIX). Further examples can be found in [Arkin 98].
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Adaptive Heuristic Critic One fundamental problem of reinforcement learning is
the temporal credit assignment problem: because reinforcement is only received
once the final goal state has been reached, it is hard to apportion credit to the
actions that preceded the final, successful action.

The way this problem is often addressed is by learning an internal evalua-
tion function which predicts the long-term reward of taking action a in state s.

Systems that leamn such internal evaluation function are called adaptive critics
({Sutton 917).

Temporal Difference Learning One major drawback of (-learning is that actions
taken early on in the exploration process do not contribute anything towards the
learning process — only when finally, by chance, a goal state is reached can the
learning rule be applied. This makes (-learning so time-consuming.

One way of dealing with this problem would be to make predictions of the
outcome of actions as the robot explores its world, and to estimate the value of
each action a in state s through these predictions. This kind of leamning is called
Temporal Difference Learning or TD Learning.

In effect, the learning system predicts reward, and uses this predicted reward

for the learning system, until actual external reward is received. A discussion of
this method can be found in [Sutton 88].

Further Reading on Reinforcement Learning

* Andrew Barto, Reinforcement Learning and Reinforcement Learning in Mo-
tor Control, in [Arbib 95, pp. 804-813).

* [Ballard 97, ch. 11].

¢ [Mitchell 97, ch. 13].

* [Kaelbling 90].

4.2.2 Probabilistic Reasoning

We discussed earlier the difference between the machine learning problem and
the robot learning problem: the former attempts to find an optimal function with |
regard to some reward criterion, that maps a fully known input state on to a fully
known goal state, while the latter has the additional complication that the true
state of the world is unknown.

Uncertainty is a major issue in the interaction between a robot and the envi-
ronment it is operating in. Sensor signals do not signify the presence of objects,
for instance. They merely indicate that the environment is such that a sonar pulse
returns to the robot after such and such a time, which indicates with some prob-
ability that there is an object out there, reflecting sonar bursts.

Likewise, a robot never knows precisely where it is (the problem of localisa-
tion is discussed in detail in chapter 5), and can only estimate its current position
with some probability.

In some sitzations these probabilities are known, or can be estimated to suffi- L
cient accuracy to allow mathematical modelling. Markov processes are the most - 7
widely used instantiation of such probabilistic models. '
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Markov Processes A Markov process is a sequence of (possibly dependent) ran-
dom variables (x1, T2, . .. z,) with the property that any prediction of z, may
be based on the knowledge of x,,—; alone. In other words, any future value of
a variable depends only on the current value of the variable, and not on the se-
quence of past valaes.

An example is the Markov process shown in figure 4.3, which determines
whether a bit string has odd or even parity, i.e. whether it contains an odd or an
even number of ‘1’s, :

o
P
‘D, Co m ‘0’
\W—/
$1 ’

FIG. 4.3. A MARKOV PROCESS TO DETERMINE ODD OR EVEN PARITY OF A BIT STRENG

L

If you start in position ‘even’ before processing the first bit, and then follow
the transitions between the two states according to whether the current bit in the
bit string is a *0” or a ‘1’, the final state you end up in indicates whether the
bit string has odd or even parity. All transitions are merely dependent on the
currently processed bit, not on the sequence of previously processed bits. There
is no counting of “1’s at all,

Markov Decision Processes One can expand the definition of a Markov process
(which was dependent only on the current state s and the transition process o —
in the parity example the fact whether a ‘0’ or a 1’ was being processed} by
adding a state transition model of the environment, and a reward function that
assesses the agent’s performance.

A Markov decision process is defined by a tuple < S, A, T, R >, where 5 is
a finite set of system states, 4 a finite set of actions, T a state transition model
that maps state-action pairs onto a probability distribution over S (indicating
the probability of reaching state ' if action a is performed in state s}, and R a
reward function that specifies the reward the robot receives for taking an action
o € Ainstate s € S, As this is a Markovian process, knowledge of s and o is
sufficient to determine the new state §’, and to compute the reward r obtained by
moving to state s'.

The value V'(s) is the expected sum of future rewards, discounted by a dis-
count factor 0 < A < I that increases as the expected rewards are further away
in the future.
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It is possible to determine the optimal policy with respect to V' in a Markov
decision process, and therefore to determine how the agent should act in order
to obtain that maximal value V' ([Puterman 947).

Partially Observable Markov Decision Processes A common problem in

robotic applications is that usually the state is not fully observable, i.e. it is not
always known what the current system state is. In this case, a model of obser-
vations must be added. This model specifies the probability of making observa-
tion o after having taken action a in state s.

The belief state then is a probability distribution over S (the set of all possible
states), representing for each state s € S the belief that the robot is currently in
state s.

The procedure for the Markov decision process discussed above can now be
modified to partially observable environments, by estimating the robot’s current
state s, and by applying a policy that maps belief states onto actions. Again,

“the objective is to determine the policy that will maximise the discounted future

reward.

Further Reading on Markov Decision Processes

¢ Leslie Pack Kaelbling, Michael Littman and Anthony Cassandra, Planning
and Acting in Partially Observable Stochastic Domains, Artificial Intelli-
gence, Vol. 101, 1998,

4.2.3 Connectionism

Connectionist computing architectures (also called “artificial neural networks™)
are mathematical algorithms that are able to learn mappings between input and
output states through supervised learning, or to cluster incoming information
in an unsupervised manner. Their characteristic feature is that many indepen-
dent processing units work simultaneously, and that the overall behaviour of the
network is not caused by any one component of the architecture, but is emer-
gent from the concurrent working of all units. Because of their ability to leam
mappings between an input and an output space, to generalise incoming data, to
interpret (cluster) input information without supervision (i.e. without teaching
signal}, their resistance to noise and their robustness (the term graceful degra-
dation describes the fact that the performance of such networks is not solely
dependent on the individual unit — losing one unit will merely mean a degrada-
tion, not a total loss of performance), connectionist computing architectures can
be used well in robotics. [Torras 91] gives an overview of (largely simulation)
work that has been done in the field: supervised learning schemes have been ap-
plied to the generation of sequences, both supervised and unsupervised learning
schemes have been used to learn non-linear mappings such as inverse kinemat-
ics, inverse dynamics and sensorimotor integration, and reinforcement learning
has largely been used for tasks involving optimisation, such as path planning.




Mobile Robaotics: A Practical Introduction

“‘Artificial neural networks can be used in a number of applications in mo-
. bile robotics. For instance, they can be used to learn associations between input
" signals (e.g. sensor signals) and output signals (e.g. motor responses). Case stud-
~ies 1 and 2 (p. 69 and p. 74) are examples of such applications,

- They can also be used to determine the underlying (unknown) structure of
data, which is useful to develop internal representations, or for data compression
applications. In case study 3 (p. 80) FortyTwo uses a self-organising artificial
neural network to determine the underlying structure of visual perceptions of its
environments, and applies this structure to detecting target objects in the image.

The following sections and case studies give a brief overview of common
artificial neural networks, and their applications to mobile robotics.

McCulloch and Pitts Neurons The inspiration for artificial neural networks is
given by biological neurons, which perform complicated tasks such as pattern
recognition, learning, focusing attention, motion control, etc. extremely reliably
and robustly. A simplified biological neuron — the model for the artificial nen-
ron - consists of a cell body, the soma which performs the computation, a num-
ber of inputs (the dendrites), and one or more outputs (the axor) which connect
to other neurons. Signals in the simiplified biological neuron model are encoded
in electric spikes, whose frequency encodes the signal.

The connections between dendrites and soma, the synapses, are modifiable by
so-called neurotransmitters, meaning that incoming signals can be amplified, or
attenuated.

The simplified model assumes that the firing rate (i.e. the frequency of output
spikes) of a neuron is proportional to the nevron’s activity. In artificial neural net-
works, the output of the artificial neuron is sometimes kept analogue, sometimes

| thresholded to produce binary output. This is dependent on the application.

i In 1943 McCulloch and Pitts proposed a simple computational model of bi-

| ological neurons. In this model, the input spikes of biological neurons were re-

| placed by a continuous, single-valued input signal, the “chemical encoding” of
synaptic strength was replaced by a multiplicative weight, the threshold function
of a biological neuron was modelled using a comparator, and the spiking output
signal of a biological neuron was replaced by a binary value.
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FIG. 4.4. THE MCCULLOCH AND PITTS NEURON
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The McCulloch and Pitts neuron is shown in figure 4 4. Its functionality is as

follows. The neuron computes the weighted sum k of all » inputs 2, according to 5

equation 4.4.

k= Z Wy (4-4)
=1

This weighted sum is then compared with a fixed threshold @ to produce the
final output ¢. If & exceeds @, the neuron is “on” (usually defined as ‘o = 1),
if k is below the threshold, the neuron is “off” (usually defined as either ‘o = (
or ‘o= 1"

McCulloch and Pitts ([McCulloch & Pitts 43]) proved that, given suitably
chosen weights, a synchronous assembly of such simple neurons is capable in
principle of universal computation — any computable function can be imple-
mented using McCulloch and Pitts neurons. The problem, of course, is to cheose
the weights “suitably”. How this can be achieved is discussed later in this sec-
f1om.

Example: Obstacle Avoidance Using McCulffoch and Pitts Neurons A robot
as shown in figure 4.5 is to avoid obstacles when one or both of the whiskers
trigger, and move forward otherwise. Whiskers LW and RW signal ‘1° when
they are triggered, ‘0’ otherwise. The motors LM and RM move forward when
they receive a ‘1’ signal, and backwards when they receive a *-1 signal.

N
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FIG. 4.5. A SIMPLE VEHICLE

The truth table for this obstacle avoidance behaviour is shown in table 4.1.

We can implement this function using one McCulloch and Pitts nevron for
each motor, using neurons whose output is either “-1” or “+17, In this example,
we will determine the necessary weights waw and wyw for the left motor neu-
ron only. The weights for the right neuron are determined in a similar fashion.
We choose a threshold @ of just below zero, -0.01 say.

The first line of truth table 4.1 stipulates that both motor neurons must be ‘41’
if neither LW nor RW fire. As we have chosen a threshold of @ = —0.01 this is
fulfilled.
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LWRW LM RM

0 0 1 1
0 1 -1 1
1 0 1 -1
1 1 don'tcare don't care

Table 4.1. TRUTH TABLE FOR OBSTACLE AVOIDANCE

Iine two of table 4.1 indicates that wgw must be smaller than @ for the left
motor neuron. We choose, say, wrw = 0.3,

Line three of the truth table, then, indicates that ww must be greater than ©.
We choose, say, wrw = 0.3.

As a quick check with table 4.1 shows, these weights already implement the
obstacle avoidance function for the left motor neuron! The functioning network
1s shown in figure 4.6.

M
03 03
LW RW

FIG. 4.6. LEFT-MOTOR NODE FOR OBSTACLE AVOIDANCE

The way we determined the weights here was by “common sense”. Looking
at the relatively simple truth table of the obstacle avoidance function, it is a
straightforward exercise to determine weights that will give the desired output
function.

However, for more complicated functions, determining weights by “common
sense” is very hard, and it is desirable to have a learning mechanism that would
determine those required weights automatically. There is a second reason why
we want such a learning rule: it would allow us to build robots that learn. The
Perceptron is a network consisting of McCulloch and Pitts neurons that fulfils
this requirement.

Exercise 2: Full Obstacle Avoidance Using McCulloch and Pitts Neurons What
will the robot do if borh whiskers are touched simultaneously? Which artificial
neural network, based on McCulloch and Pitts neurons, would implement the
function indicated in truth table 4.1, and make the robot move backwards if both
whiskers are touched? The answer is given in appendix 2.1 on page 218.

4 Robot Learning: Making Sense of Raw Sensor Data 58

Perceptron and Patiern Associator The Perceptron ([Rosenblatt 621) is a “single-
layer” artificial neural network that is easy to implement, low in computational
cost and fast in leamning. It consists of two layers of units: the input layer (which -
simply passes signals on) and the output layer of McCulloch and Pitts neurons
(which performs the actual computation, hence “single layer network™ — see
figure 4.7, right).

The function of input and output units is as follows: input vnits simply pass
the received input signals 7’ on to all output units, the output o, of output unit j
is determined by

A
oj = f(>_wjku) = f(ui - ), (4.5)
k=1

where 0} is the individual weight vector of output unit j, M the nmwmber of input
units, and f the so-called transfer function.
The transfer function f of the Perceptron is defined as a step function:

1 Yao>0
fla) = {O(or— 1} else.

€ again is a threshold value.

The Pattern Associator (see figure 4.7, left} is a variant of the Perceptron, with
the only difference that here f(z) == x. The main difference between Perceptron
and Pattern Associator, therefore, is that the Perceptron generates binary output,
while the Pattern Associator’s output is continnous-valued. Otherwise, these two
networks are very similar ([Kohonen 88] and [Rumelhart & McClelland 867).

P
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]

FIG. 4.7. PATTERN ASSOCIATOR {LEFT) AND PERCEPTRON {(RIGHT)
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The Perceptron Learning Rule In the case of the McCulloch and Pitts neuron,

we determined the suitable weights by applying our common sense. For com-
plex networks and complex input-output mappings, this method is not suitable.
Furthermore, we would like to have a learning rule so that we can use it for
autcnomous robot learning.

The rule for determining the necessary weights is very simple?, it is given in
equation 4.6.

Ay, (£) = 5 (t) (tr — op) 7, 4.6)

B (¢ + 1) = @ (&) + Ay, (4.7)

with 7 being the target value for unit %, i.e. the desired output of output
unit k&, and oy, the actually obtained output of unit k. The speed of learning is
determined by the learning rate 7(¢). A big 5 (for example 0.8) will result in a
network that adjusts very quickly to changes, but which will also be “neurotic”
(it will forget all it has learned and learn something new as soon as a couple of
freak signals occur). A small 57 (for example 0.1), on the other hand, will result
in a “lethargic” network that takes a long time before it learns a function. The
learning rate v is usually chosen to be constant, but may be variable over time.

Example: Obstacle Avoidance Using a Percepfron We'll consider the the same

example we have considered before: obstacle avoidance (see p. 57). The differ-
ence this time is that we use a Perceptron, and that we determine the required
weights, using the Perceptron learning rule given in equations 4.6 and 4.7.

Letn be 0.3, and © again just below zero, say -0.01. The two weights of the
left-motor node are also zero to start with. Thls initial configuration is shown in
figure 4.8.

We now go line by line through the truth table 4.1, applying equations 4.6
and 4.7.

Line one of the truth table yields:

wrwrim = 0+03(1-1)0=0
wrwrmy = 0+0.3(1-1)0=0

Likewise, the other two weights also remain zero.

Iine two of table 4.1 results in the following updates:

wLWLM$0+O.3(—1—1)O=U
wrway =0+03(1-1)1=0
’LURWLM=0+0.3(—1—1)1 = —0.6
wrwrpm = 0+03(1-1)1=0

Line three of the truth table gives:

2 The derivation of this rule can be found in [Hertz e al. 91].
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w
LWRM

Lw RW

FIG. 4.8. LAYOUT OF A PERCEPTRON FOR OBSTACLE AVOIDANCE

wLWLM:O+O.3(1—1)I:O
wrwrm =0+03(—-1-1)1=-06
wrwrLym = —0.6+0.3 (1 — 1)0 =-06
wawam =0+03(-1-1D0=0

A quick calculation shows that this network already performs the obstacle
avoidance function stipulated by table 4.1 perfectly! The final network is shown
in figure 4.9. It is essentially the same network as the one obtained by hand
earlier (shown in figure 4.6).

(1] R

1 1

LW W

FIG.4.9. COMPLETE PERCEPTRON FOR OBSTACLE AVOIDANCE
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Limitations of the Perceptron Consider a network like the one shown in fi gure 4.6,

and the truth table 4.2 (the exclusive-or function).

Table 4.2. EXCLUSIVE OR (XOR) FUNCTION

If the network shown in figure 4.6 was to perform this function correctly, the
following inequalities would have to be true:

Wrw > @
WRrw > 6
wrw + waw < 6.

The first two expressions add up to wyw 4+ wgpw > 26, which contradicts
the third inequality. It can’t be done. In general Perceptrons are unable to learn
functions that are not linearly separable, i.e. functions where two classes cannot
be separated by a line, plane or hyperplane in the general case.

This means, of course, that a robot learning by using a Perceptron or a Pat-
tern Associator can only learn functions that are linearly separable, Here is an
example of a function the robot could not learn using a Perceptron: suppose we
wanted the robot to escape from a dead end by turning left whenever either of
two front whiskers is on, and by reversing whenever both whiskers are on simul-
taneously. For the ‘turn-left output node’ of the Perceptron this means that it has
to be on if either of the two whiskers fires, and to be off in the other two cases.
This is the exclusive or function, a function that cannot be separated linearly and
is therefore unlearnable by a Perceptron output node.

Fortunately, many functions robots have to learn are linearly separable, which
means that the very fast learning Perceptron can be used for tobot learning (an
example is given in case study 1 in section 4.4.1).

In fact, its speed is the major advantage of the Percepiron over networks such
as the Multilayer Perceptron or Backpropagation Network (p. 63). A very small
number of teaching experiences suffices to produce the correct associations be-
tween stimulus and response. A backpropagation network may typically require
several hundred teaching experiences before a function is learned. Re-learning
(for example when adjusting to new circumstances) then again takes typically
several hundred training steps whereas the pattern associator re-learns as quickly
as it learned in the first place. This property is important in robotics — cer-
tain competences, such as for example obstacle avoidance, have to be learned

very quickly, because the robot’s ability to stay operational crucially depends on
them.
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Further Reading on Percepirons

¢ [Beale & Jackson 90, pp. 48-53].
» [Hertz et al. 91, ch. 5.

Multilayer Perceptron So far, we have seen that a network consisting of McCul-

foch and Pitts neurons is capable of universal computation, provided one knows

how to set the weights suitably. We have also seen that a single layer network

consisting of McCulloch and Pitts neurons, the Perceptron, can be trained by the -
Perceptron leaming rule. However, we also realised that the Perceptron can only
learn linearly separable functions.

The explanation for this fact is that each layer of a network consisting of
McCulloch and Pitts neurons establishes one hyperplane to separate the two
classes the network has to leamn (the ‘1’s and the ‘0’s). If the separation between
the two classes cannot be achieved with one hyperplane — as is the case in the

. XOR problem — a single layer network will not be able to learn the function.

A Perceptron with not only one layer of output units, but with one or more
additional layers of hidden units (see figure 4.10), however, might be able to do
just that! Indeed, it can be shown that the Multilayer Perceptron can implement
any computable function. The problem is, as before, to determine the suitable
weights.

Output Layer

Hidden Layer

Input Layer

FIG. 4.10. MULTI-LAYER PERCEPTRON

The so-called backpropagation algorithm (so called because the update rule
uses the backpropagation of output error to determine the required changes in the
network’s weights) can be used to determine these weights ([Rumelhart et al. 86]
and [Hertz et al. 91]).

To begin with, all network weights are initialised to random values. The thresh-
olds & are replaced by weights o an input that is always set to +1. This makes
threshold updates a part of weight updates, which is computationally simpler.
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Once the network is initialised, training commences by presentin g input-target
(desired output) pairs to the network. These training patterns are then used to
adapt the weights,

The output o; of each unit § in the network is now computed according to
equation 4.8.

0; = f(i&; - 1), (4.8)

where i is the weight vector of that unit j, and 7'is the input vector to unit 3.
"The function f is the so-called activation function. In the case of the Perceptron,
this was a binary threshold function, but in the case of the Multitayer Perceptron
it has to be a differentiable function, and is usually chosen to be the sigmoid
function given in equation 4.9.

1) =t

where £ is a positive constant that controls the slope of the sigmoid. Fork —» oo
the sigmoid function becomes the binary threshold function that was used earlier
in the McCulloch and Pitts neurons.

Now that the outputs of all units — hidden units and output layer units —
are computed, the network is trained. All weights w;; from unit ¢ to unit j are
trained according to equation 4.10.

(4.9)

wi;(E + 1) = wiz () + 16504, 4.10

where 7 is the learning rate (usually a value of around 0.3), dp; is the error signal
for unit 7 (for output units, this is given by equation 4.11, for hidden units it is
given by equation 4.12); op; is the input to unit 7, coming from unit p.

Error signals are determined for output units first, then for the hidden units.
Conseguently, training starts with the output layer of the net, and then proceeds
backwards through the hidden layer.

For each unit j of the output layer, the error signal (5;;-“5 is determined by
equation 4.11.

Gof" = (tpy — 0p5)0p; (1 — 0p5), @.11)

where t,,; is the target signal (the desired output) for the output unit being up-
dated, and o the output actually obtained from the output unit bein g updated.

Once the error signals for the output units have been determined, the penulti-
mate layer of the network — the final hidden layer — is updated by propagating
the output errors backwards, according to equation 4.12.

Opi = 0pi (L —0p) Y Sprvny, (4.12)
k
where o,; is the output of the hidden layer unit currently being updated, Sk

the error of unit k& in the subsequent layer of the network, and wy; the weight
between hidden unit § and the subsequent unit % on the next higher layer.
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This training process is repeated until, for example, the output error of the
network drops below a user-defined threshold. For a detailed discussion of the
Multilayer Perceptron see, for instance, [Rumelhart et al. 86], [Hertz ef al. 91]
[Beale & Jackson 90] and [Bishop 95].

Advantages and Disadvantages The Multilayer Perceptron can be used to learn

non-linearly separable functions, and thus overcomes the problems of the Per-
ceptron. The price to pay for this is, however, that learning usually is a 1ot slower.
Whereas the Perceptron learns within a few learning steps, the Multilayer Per-
ceptron typically requires several hundred leaming steps to learn the desired
input-output mapping. This is a problem for robotics applications, not so much
for the computational cost, but for the fact that a robot would have to repeat the
same sort of mistake hundreds of times, before it learns to avoid it®. For funda-
mental sensor-moetor competences such as obstacle avoidance, this is usunally not

acceptable.

Further Reading on Mullilayer Perceptrons

= [Rumelhart & McClelland 86, ch. 8].
= [Hertz er al. 91, pp.115-1201],

Radizl Basis Function Networks Like the Multilayer Perceptron (MLP), the Ra-

dial Basis Function Network (RBF net) can learn non-linearly separable func-
tions. It is a two-layer network, in which the hidden layer performs a non-linear
mapping based on radial basis functions, whilst the output layer performs a lin-
ear weighted summation on the output of the hidden layer (as in the Pattern
Associator). The fundamental mechanisms of RBF net and MLP are similar, but
whilst the MILP partitions the input space using linear functions (hyperplanes),
the RBF net uses nonlinear functions (hyperellipsoids). Figure 4.11 shows the
general structure of a radial basis function network ([Lowe & Tipping 96]).

The hidden units have a Gaussian capture region which serves to identify
similarities between the current input vector and a hidden unit’s weight vector —
each weight vector is a prototype of one specific input signal. The hidden layer
performs a nonlinear mapping of the input space, which increases the probability
that classes can be separated linearly.

The output layer then associates the classification of the hidden layer with the
target output signal through linear mapping, as in the Perceptron and the MLP.

The output oy,;4,; of RBF unit 7 in the hidden layer is determined by equa-
tion 4.13:

Ohid,j = exTp{— z W:r—wj”), (4.13)
J

* To use once perceived sensor patterns for tepeated training is problematic, because of the high
number of freak perceptions obtained with robot sensors.
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The Self-Organising Fealure Map All artificial neural networks discussed so far
are trained by *supervised training”: learning is achieved by using a target value,

Linear i.e. the desired output of the net. This target value is supplied externally, from a
Layer “supervisor” (which could be another piece of code, as in case study ! on p. 69,
or a human, as in case study 2 on p. 74).

However, there are applications where no training signal is available, for ex-
ample all applications that have to do with clustering some input space. It is
often useful in robotics to cluster a high dimensional input space and to map it

Radial Basis automatically — in an unsupervised manner — onto a lower dimensional output
::;:fon space. This dimensionality reduction is a form of generalisation, reducing the

complexity of the input space whilst, hopefully, retaining all the “relevant” fea-
tures in the input space. Case study 3 (p. 80) gives an example of the application
of unsupervised learning in mobile robotics.

The seif-organising feature map (SOFM), or Kohonen network, is one mech-
anism that performs an unsupervised mapping of a high dimensional input space

- onto a (typically) two-dimensional output space ([Kohonen 88]).

The SOFM normally consists of a two-dimensional grid of units, as shown in

figure 4.12.

Input
Vector

Fi1G. 4.11. RADIAL BASIS FUNCTION NETWORK

with ; being the weight vector of RBF unit j, 7’ being the input vector, and o
being the parameter controlling the width of the bell curved capture region of
the radiai basis function {e.g. ¢ = 0.05).

The output o of each unit of the output layer is determined by equation 4,14.

—-
Inpuit vector

0 = Fhig - U, ' (4.14)

ao

I Example
( wny Neighbourhood
Hegion

where G4 is the output of the hidden layer, and @ is the weight vector of output
unit k.

Training of the output layer is simple, and achieved by applying the Percep-
tron learning rule given in equations 4.6 and 4.7.

The RBF network works by mapping the input space onto a higher dimen-
stonal space through using a nonlinear function, for example the Gaussian func-
tion described above. The weights of the hidden layer, therefore, have to be cho-
sen such that the entire input space is represented as evenly as possible. There
are several methods for determining the weights of the units in the hidden layer.
One simple method is to spread the cluster centres evenly over the input space
{[Moody & Darken 891). Allernatively, it is sometimes sufficient to position the
cluster centres at randomly selected points of the input space. This will ensure
that RBF cluster density is high where input space density is high, and low where
the input density is low ([Broomhead & Lowe 88]). Finally, the weights of the
hidden layer can be determined by a clustering mechanism such as the one used
in the self-organising feature map (see next section).

=
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§=

FIG. 4.12. SELF-ORGANISING FEATURE MAP

Al units receive the same input vector 7. Initially, the weight vectors «; are
initialised randomly and normalised to unit length.
The output ¢, of each unit j of the net is determined by equation 4.15.

0; = 'lf)’j - (4.15)

Further Reading on Radial Basis Function Networks Because of the random initialisation of the weight vectors, the outputs of all

units will differ from one another, and one unit will respond most strongly to a__'__:"--_f
particular input vector. This “winning unit” and its surrounding units will thén - ...
be trained so that they respond even more strongly to that particular input vector, 3

+ David Lowe, Radial Basis Function Networks, in [ Atbib 95, pp. 779-782).
+ [Bishop 95, ch. 5].
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by applying the update rule of equation 4.16. After having been updatéd, weight
vectors oy are normalised again.,

tﬁj(t-f-l) :'tﬁj(t) +‘G(f-— Tﬁj(t)), (4.16)
where 77 is the learning rate (usually a value around 7 = 0.3). The neighbourhood
around the winning unit, within which units get updated, is usually chosen to be
large in the early stages of the training process, and to become smaller as training
progresses. Figure 4.12 shows an example neighbourhood of one unit around the
winning unit (drawn in black). The figure also shows that the network is usually
chosen to be torus-shaped, to avoid border effects at the edges of the network.

As training progresses, certain areas of the SOFM become more and more
responsive to certain input stimuli, thus clustering the input space onto a two-
dimensional output space. This clustering happens in a topological manner, map-
ping similar inputs onto neighbouring regions of the net. Example responses of
trained SOFMs are shown in figures 4.19, 4.23 and 5.19.

Application of SOFMs to Robotics Generally, SOFMs can be used to cluster an
input space to obtain a more meaningful, abstracted representation of that input
space.

A typical application is to cluster a robot’s sensory input space. Similarities
between perceptions can be detected using SOFMs, and the abstracted represen-
tation can be used to encode policies, i.e. the robot’s response to a particular

perception. Case study 6 (section 5.4.3) gives one example of how SOFMs can
be used for robot route learning,

Further Reading on Seff-Organising Feature Maps

= [Kohonen 88, ch. 5].

o Helge Ritter, Self-Organizing Feature Maps: Kohonen Maps, in [Arbib 95,
pp. 846-851].

4.3 Further Reading on Learning Methods

On Machine Learning

= Tom Mitchell, Machine Learning, McGraw Hill, New York, 1997.
» Dana Ballard, An Introduction to Natural Computation, MIT Press, Cam-
bridge MA, 1997.

On Connectionism

» John Hertz, Anders Krogh, Richard G. Palmer, Introduction to the Theory
of Neural Computation, Addison-Wesley, Redwood City CA, 1991.

* R. Beale and T. Jackson, Neural Computing: An Introduction, Adam Hilger,
Bristol, Philadelphia and New York, 1990.

¢ Christopher Bishop, Neural Networks for Pattern Recognition, Oxford Uni-
versity Press, Oxford, 1995,

¢ Simon Haykin, Neural Networks : a Comprehensive Foundation, Macmil-
lan, New York, 1994,
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4.4 Case Studies of Learning Robots =~~~

4.4.1 Case Study 1. ALDER: Self-Supervised Learning
of Sensor-Motor Couplings o

Having discussed the problem of robot leamning in general, and the machine
learning mechanisms that can be vsed o achieve competence acquisition in
robots, we will now take a closer look at specific examples of mobile robots
that learn to interpret their sensory perceptions to accomplish particular tasks.

The first case study presents a seif-organising controller architecture which
enables mobile robots to learn through trial and error, in a self-supervised learn-
ing process that requires no human intervention. The first experiments were
conducted in 1989 ([Nehmzow er al. 89]), using the robots ALDER and CAIRN-
GORM (see figure 4.14), but the mechanism has since been used in many rebots
internationally to achieve autonomous acquisition of sensor motor competences
(see, for instance, [Daskalakis 91] and [Ramakers 93]).

The fundamental idea of the controller is that a Pattern Associator (see sec-
tion 4.2.3) associates sensory perception with motor action. Because this associ-
ation is acquired through a learning process, rather than being pre-installed, the
robot can change its behaviour and adapt to changing circamstances, if the ap-
propriate training mechanism is provided. In ALDER’s and CAIRNGORM’s case
performance feedback is received using so-called instinct rules. These instinct
rules specify sensor states that must be maintained (or avoided) throughout the
entire operation of the robot: behaviour is thus expressed in the form of sensor
states, and the robot learns the appropriate behaviour in order to maintain {or

~ avoid) the required states.

Figure 4.13 shows the general structure of the entire controller used in all
experiments discussed in this section. The controller consists of fixed and plas-
tic components, fixed components being the so-called instinct-rules, the robot
morphology and various parameters within the controller; the plastic component
being the Pattern Associator.

instinet Rules As the Pattern Associator is trained under supervised learning, a
target signal — the desired response to a particular input - must be provided. As
we want the robot to learn without human intervention, an independent method
has to be devised to obtain these target signals.

We use fixed rules for this purpose which we call instinct-rules. They are
similar, but not identical to instincts as defined by [Webster 811

“[An instinct is a] complex and specific response on the part of an or-
ganism to environmental stimuli that is largely hereditary and unalter-
able though the pattern through which it is expressed may be modified
by learning, that does not involve reason, and that has as its goal the
removal of a somatic tension or excitation”.

This describes behaviour and is therefore different to the instinct-rules used in -

the experiments described here, as instinct-rules are not behaviour, but constants - :
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FIG.4.13. COMPUTATIONAL STRUCTURE OF THE SELF-ORGANISING CONTROLLER

(sensor states) that guide the learning of behaviour. The goal of instinct and
instinct-rules, however, is the same: the removal of a somatic tension (in the
case of the robot such a “somatic tension™ is an external sensor stimulus, or, in
some experiments, the lack of it).

Each instinct-rule has a dedicated sensor in order that it can be established
whether it is violated or not. This sensor can be a physical, external sensor (for
example a whisker), or an intermal sensor (for exampie a clock that is reset every
time some external sensor stimulus is received).

To sumn up, the instinct-rules are used to generate a reinforcement signal (the
signal being the fulfilment of a previously violated instinct-rule), they do not
indicate correct behaviour.

input and Cutput Current and previous sensor signals constitute the input signals

to the Pattern Associator. Typically, raw sensor signals are used, but sometimes it
is useful to apply preprocessing to the sensor signals. Information about violated
instinct-rules could similarly be used.

The output of the network denotes motor actions of the robot. Examples for
such motor actions are swift left tum (i.e. right motor moving forward while left
motor is moving backward), swift right turn, forward or backward movement.
An alternative to using such “compound” motor actions is to use artificial motor
neurons with analogue outputs to drive a differential drive system. Experiments
of this kind are described in [Nehmzow 99¢].

The idea behind this controller setup is that effective associations between
sensor signals and motor actions arise over time through the robot’s interaction
with the environment, without human intervention.
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Mechanism As said earlier, the Pattern Associator requires a teaching signal to de-
velop meaningful associations between its input and its output. This teaching
signal is provided by the moniror, a “critic” that uses the instinct rules to as-
sess the robot’s performance and teach the network accordingly: as soon as any
of the instinct-rules become violated (i.e. as soon as a specified sensor status is
no longer maintained), an input signal is generated by the inpur vector genera-
tor, sent to the associative memory and the output of the network is computed
(fig. 4.13). The move selector determines which output node carries the high-
est output value and which motor action this output node stands for. That motor
action is then performed for a fixed period of time (the actval length of time de-
pends on the speed of the robot). If the violated instinct-rule becomes satisfied
within this period of time, the association between original input signal and out-
put signal within the Pattern Associator is taken to be correct and is confirmed
to the network (this is done by the monitor). If, on the other hand, the instinct-
rule remains violated, a signal is given from the monitor to the move selector
to activate the motor action that is associated with the second strongest output
node. This action is then performed for a slightly longer period of time than
the first one to compensate the action taken earlier; if this motor action leads to
satisfaction of the violated instinct-rule, the network will be taught to associate
the initia} sensor state with this type of motor action; if not, the move selector
will activate the next strongest output node. This process continues until a suc-
cessful move is found. Because the monitor is part of the robot controller, the
process of sensor-motor competence acquisition is completely independent from
an operator’s supervision: the robot acquires its competences autonomously.

' Figure 4.7 (left) shows the general structure of the Pattern Associator used,
The actual input to the network may vary from experiment to experiment, the
output nodes denote motor actions. The result of this process is that effective
associations between input stimuli and output signals (motor actions) develop.

Experiments This controller has been implemented on a number of different mo-
bile robots by different research groups. The consistent finding is that it enables
mobile robots to acquire fundamental sensor-motor couplings very rapidly, us-
ing no more than 20 learning steps (and typically far less than that), taking a few
tens of seconds in real time. Due to the ability to autonomously re-map sensory
input to actuator output the robots have the ability to maintain task-achieving
competences even when changes in the world, the task, or the robot itself occur.

Learning to Move Forward The simplest experiment to begin with is to make a
robot learn to move forward. Assuming that the robot has some means of de-

termining whether it is actually moving forwards or not*, an instinct rule of the -

form

“Keep the forward motion sensor ‘on’ at all tirnes”

# This can be achieved, for instance, by detecting whether a swivelling caster wheel is ahgned w1th :
the main axis of the robot or not, using a suitably placed microswitch.
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will lead to a mapping between sensory perception and motor actions that will
result in the robot moving forward continnously.

Obstacle Avoidance The simple, acquired forward motion behaviour can be ex-
panded to a forward motion and obstacle avoiding behaviour by adding one or
more further instinct rules. For example, if we take the case of a simple mo-
bile robot with just two whisker sensors mounted at the front (figure 4.5), the
following two instinct rules would lead to that behaviour:

1. “Keep the forward motion sensor ‘on” at all times!”
2. “Keep whiskers ‘off” at all times!”

For robots with infrared or sonar sensors, the second instinct rule would have
to be changed accordingly, for instance to “Keep all sonar readings above a
certain threshold™, or similar,

Experimental results with many different robots, using different sensor modal-
ities show that the robots learn obstacle avoidance very quickly (less than a
minute in most cases), and with very few learning steps (less than 10 in most
cases).

FiG. 4.14. ALDER (LEFT) AND CAIRNGORM (RIGHT)

Adapting to Changing Circumstances We stated earlier that the robot’s abil-
ity to cope with unforeseen situations increases through its learning capability.
Two experiments we conducted with ALDER and CAIRNGORM highlight this
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(INehmzow 92]). In the first experiment, the robots were placed in an envi
ronment contaming convex obstacles (ordinary boxes), and quickly learned to
turn away from a touched whisker, When encountering a dead end, however, the :
robots performed poorly to begin with (by turning back into the dead end, rather -

than towards the exit). Soon (within two minutes), though, they found the exit =~

and had by then acquired a new behaviour: they were now turning in one and the
same direction, regardless of whether the left or the right whisker was touched.
This behaviour is best suited for leaving dead ends: the robots had adapted to
their new environment.

In a second experiment, the robots” whiskers were physically swapped after
they had acquired the obstacle avoidance competence. In between four and six
learning steps they adapted the associations between sensor signals and motor
actions within the artificial neural network, regained the ability to avoid obsta-
cles and thus “repaired™ the (in this case externally induced) fault.

We once found that one of our robots had been used for weeks, successfully
learning many tasks, whilst inadvertently one of the eight infrared sensors had
not been working due to a loose connection. Because of the redundancy in sen-
sors (more than one sensor covering the area surrcunding the robot), the robot
had leamed to avoid obstacles using the other sensors.

Contour Following By extending the set of instinct rules, the robots can acquire the
ability to stay close to contours such as walls. In ALDER’s and CAIRNGORM's
case a third instinct-rule was added:

1. “Keep the forward motion sensor ‘on’ at all times!”
2. “Keep whiskers ‘off” at afl times!”
3. “Do touch something every four seconds!”

Using these three rules (or rules to the same extent), robots quickly learned
to move forward, to steer away from obstacles, but to seek obstacles (i.e. walls)
actively every four seconds. The resulting behaviour is that of wall following,

The following experiment demonstrates how quickly the robots can adapt to
changing circumstances. When ALDER or CAIRNGORM were turned by 180°
after having successfully learned to follow a wall on, say, their right hand side,
they re-mapped sensory input to motor action within three to four learning steps
such that they were able to follow a wall on their left hand side. If the robots’
direction of motion is changed again, the re-learning process was even faster, be-
cause latent associations, acquired earlier, were still present within the network
and only needed to be strengthened slightly to become active again.

Corridor Following By adding a fourth instinct rule, using short-term memory this
time, the robots can learn to stay in the centre of a corridor by touching left and
right walls in turn. The instinct rules for corridor following behaviour are;

1.. “Keep the forward motion sensor ‘on’ at all times!”
2. “Keep whiskers ‘off” at all times!”

3. “Dao touch something every four seconds!” i
4. “The whisker that was touched last time must not be touched this tzme'” o
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Phototaxis and Box-Pushing The possibilities of acquiring new competences are
merely limited by a robot’s sensors, and the fact that not all behaviours can be
expressed in simple sensor states alone. The first case study will be concluded by
looking at experiments with an IS Robotics R2 robot, which had infrared range
sensors and light sensors.

Phototaxis was acquired within less than 10 learning steps, using an instinct-
rule stipulating that the light sensors mounted at the front of the robot must
return the highest value (i.e. face the brightest light).

Similarly, by using a instinct rule requiring the front facing infrared sensors
to be “on” constantly (i.e. to return sensor values that indicate an object was
situated in front of the robot), the robot acquired a box-pushing or object follow-
ing competence in two learning steps, one for each of the two sitnations where
the box is placed to the right or the left of the robot’s centre respectively. The
learning time to acquire a box-pushing competence is less than one minute.

4.4.2 Case Study 2. FortyTwo: Robot Training

The mechanism for autonomous competence acquisition, described in case
study 1, can be adapted in such a way that the robot can be trained to per-
form certain sensor-motor tasks. This chapter explains how this can be done,
and presents experiments conducted with FortyTiwo,

Why Robot Training? For robotic tasks that are to be performed repeatedly and
in structured environments, fixed installations {(both hardware and software) for
robot control are viable. Many industrial applications fall into this category,
for example mass assembly tasks, or high-volume transportation tasks. In these
cases, fixed hardware installations (robot assembly lines, conveyor belts, etc.)
and the development of fixed, one-off control code are warranted. As robot hard-
ware teéhnology advances, sophisticated robots become available at constantly
decreasing cost and even small workshops and service companies become in-
terested in robotics applications ([Schmidt 95] and {Spekirum 95]), the develop-
ment of control software becomes the governing factor in cost-benefit analysis.
For low-volume tasks programming and re-programming the robot is not viable.

In this second case study we discuss experiments in which the robot is frained
through supervised learning (training signals being provided by the operator)
to perform a variety of different tasks. Simple sensor-motor competences such
as obstacle avoidance, random exploration or wall following, as well as more
complex ones such as clearing objects out of the way, area-covering motion in
cotridors (“cleaning”) and learning simple routes are achieved by this method,
without the need to alter the robot control code. During the training phase the
robot is controlled by a human operator, and uses the received feedback signals
to train an associative memory. After a few tens of learning steps, taking five to
ten minutes in real time, the robot performs the required task autonomously. If
task, robot morphology or environment change re-training, not re-programming
is used to regain the necessary skills.
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Related Worlk The method of providing external feedback to the leaming pro-
cess is as yet relatively rarely used in robatics. Shepanski and Macy use an
operator-taught multilayer perceptron to achieve vehicle-following behaviour in
a simulated motorway situation ([Shepanski & Macy 87]). The network learns
to keep the simulated vehicle at an acceptable distance to the preceding vehicle
after about 1000 learning steps. Colombetti and Dorigo present a classifier sys-
tem with a genetic algorithm that enables a mobile robot to achieve phototaxis
{[Colombetti & Dorigo 93]). AUTONOMOQUSE, the robot used, began to show
good light seeking behaviour after about 60 minutes of training time.

Unsupervised learning has also been used in robot control. Tasks such as
obstacle avoidance and contour following ([Nehmzow 95a]), box-pushing
{[Mahadevan & Connell 91] and [Nehmzow 95a]), coordination of leg move-
ment in walking robots {[Maes & Brooks 90]) or phototaxis ([Kaelbling 92],
[Colombetti & Dorigo 93] and [Nehmzow & McGonigle 94]) have successfully
been implemented on mobile robots.

Teach-by-guiding ([Critchlow 85] and [Schmidt 95]) is still a common method
of programming industrial robots. This method is different to work based on ar-
tificial neural networks, in that it does not show the generalisation properties of
networks, but merely stores chains of locations to be visited in sequence.

Controller Architecture The central component in the controller used in the ex-
periments is an associative memory, implemented as before through a Pattern
Associator. The controller is shown in figure 4.15.

Inputs to the associative memory consist of preprocessed sensor signals. In
the experiments presented here sensor signals from the robot’s sonar and in-
frared sensors have been used, and preprocessing was limited to a simple thresh-
olding operation, generating a ‘1’ input for all sonar range signals of less than
150 cm distance (see figure 4.16). Experiments using visual input data are re-
ported elsewhere ([Martin & Nehmzow 95]); in these experiments thresholding,
edge detection and differentiation were used in the preprocessing stages.

The analogue output signals oy of the associative memory are computed ac-
cording to equation 4.17:

o = Wy - T, (4.17)

with 7’ being the input vector containing the sensor signals, and 10, the weight
vector of output node k (i.e. one of the two output nodes).

The two analogue output nodes of the associative memory drive the steering
and translation motor of the robot, respectively (in the experiments presented
here steering and turret rotation are locked, so that the front of the robot is al-:
ways facing the direction of travel). This generates continuous, smooth steer- -
ing and translational velocities, depending on the strength of the association be-
tween current sensory stimulus and motor response (see also [Nehmzow _99(:}):_-: :
the robot moves fast in situations which have been trained frequently and there- -
fore have strong associations between sensing and action (“familiar” situations), °
and slowly in “unfamiliar” situations. If sensor signals are received which have -
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never been encountered during the training phase, i.e. situations in which the
network weights between sensory input and motor action output are zero, the
rebot does not move at all.

associative memory (i.e. all network weights are set to zero), and the robot is
driven by the operator by means of the joystick, Information about the mllrre_nt
environment {the input vector 7'to the controller) and the desired motor action in
this situation (yielding the target output 73, of equation 4.6 for each of th.e two
output units of the network) is therefore available to the robot controller in the
training phase.
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Adjusting the weight vector ), of output unit £ is achieved by applying the
Perceptron leaming rule (equations 4.6 and 4.7).

The learning rate 5 was chosen at 0.3, and decreased by 1% every learning
step. This eventually stabilises the associations stored in the associative mem-
ory of the controller. There are other ways conceivable of choosing the learning
rate: an initially high, but rapidly falling rate will result in a robot learning only
during the initial stages of the learning process, whilst a constant 71 will lead to
continous learning behaviour. Thirdly, by means of a novelty detector a low n
could be increased when drastic changes are detected.

Experiments The experiments described here were conducted in a laboratory of
S5m x 15m, containing tables, chairs and boxes which were detectable by the
robot’s sensors.

Initially, there were no sensor-motor associations stored in the associative
memory, and the robot was driven by the operator by means of the joystick. Us-
ing this information for training, meaningful sensor-motor couplings developed
within the artificial neural network, and the robot improved rapidly in perform-
ing a specified task. After a few tens of learning steps the acquired information
was usually sufficient to control the robot without any user intervention, the
robot then performed the task antonomously, solely under network control.

Obstacle Avoidance Initially driving the robot with the Jjoystick, FortyTwe was
tramed to avoid convex obstacles and cul-de-sacs. The robot leamned this in
less than 20 learning steps (one step being one application of equations 4.6
and 4.7), taking a few minutes in real time. The resulting obstacle avoidance
motion was smooth, and incorporated translational and rotational moverments at
varying speeds, according to the strength of association between Sensory per-
ception and corresponding motor action (see also [Nehmzow 99c]).

Wall Following In the same manner as before, the robot was trained to stay within a
distance of about 50 cm to the wall, As the only relevant part of the input vector
for this task is the infrared one, the robot moved closer towards dark objects
(little infrared reflection), and further away from light objects. Again, learning
was achieved within 20 learning steps, and the acquired motion was smooth, The
robot could be trained to follow left hand walls, right hand walls, or both,

Box-Pushing Both infrared sensor and sonar sensor range data is part of the input
vector presented to the associative memory of the controller (see figure 4.16),
and can therefore be used by the controller to associate action with perception.
FortyTwo’s infrared sensors are mounted low, about 30 cm above ground, whilst
the sonar sensors are mounted high (ca. 60 cm above ground),

In a box-pushing experiment the robot was taught to move forward if a low ob-
ject was detected straight ahead, and to turn left or right if an object was detected
to the Ieft or the right side of the robot respectively. During the training phase of

about 30 learning steps, associations between the robot’s infrared sensors (which * S
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are relevant to this task) developed, whilst sonar data delivered contradictory in-
formation in this experiment and strong associations between the “sonar part” of
the input vector and the motor-driving outputs did not develop.

The robot acquired the ability to push a box quickly, in a few minutes of real
time. After the initial training phase the robot was able to push and follow a box
autonomously, staying behind the box even if the box moved sideways.

Clearing As the infrared sensors of the robot return identical signals for any object

placed near the robot, it is impossible for the controller to differentiate between
boxes, walls, or people. For example, the robot will atiempt to push walls, as
much as it will push boxes.

There is, however, a way of training FortyTwe to abandon boxes near tall
obstacles: as the high mounted sonar sensors reach beyond a low bozx, the robot
can be trained to pursue objects as long as they appear only in the “infrared part”
of the input vector, but to abandon them as soon as tall obstacles appear in the
“sonar part” of the input vector. Training for about 30 to 50 learning steps, taking
between five and ten minutes in real time, the robot could be taught to acquire
such a “clearing” ability. After the training phase, the robot pursued any object
becoming visible to the infrared sensors only, and pushed it until tall obstacles
were detected by the sonar sensors. FortyTwo then turned away from the object,
locking for new boxes away from the tall obstacles. This resulted in a “clearing”
behaviour: FortyTwo pushed boxes towards walls, left them there and returned
to the center of the room to look for more boxes to move to the sides.

Surveillance Using the same method, and without any need to re-program the robot,

FortyTwo could be trained to move in random directions whilst avoiding obsta-
cles. During the training phase of approximately 30 learning steps, the robot was
instrugted to move forward when no objects were ahead, and to turn away from
obstacles once they became visible to the robot’s sensors. This developed associ-
ations between the sonar and infrared sensors and the motor-driving output units
of the network. In this manner the robot acquired a general obstacle avoidance
behaviour, also for input constellations that had not been encountered during
the training phase (this is a result of the artificial nevral network’s capability to
generalise).

The resultant obstacle avoidance behaviour was smooth and continuous; fast
translational movement occured when familiar sensor states indicated free space.
Smooth turning action was perceived when distant obstacles were detected,
rapid turning action resulted from nearby obstacles being detected. The smooth
motion of the robot was achieved through the direct association of the (analogue)
outputs of the network with motor action, and the output itself being dependent
on the strength of the input signal received (nearby objects will produce stronger
input signals).

Such random exploration and obstacle avoidance behaviour forms the basis
of a surveillance function of the robot. Using this behaviour, FortyTwoe will, for
example, follow corridors, avoiding moving and stationary obstacles as it moves.
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Route Learning As the robot effectively leams to associate sensory perception di-
recily with a motor response, it can be taught to perform certain motor actions at
particular locations, thus performing navigation. This is navigation along “per-
ceptual landmarks”, in which the perceptual properties of the environment are
used to perform the desired motion at each physical location®.

We have trained FortyTwo to follow a route as shown in figure 4.17. After
about 15 minutes of training time the robot was able to follow the wall in the
way indicated in figure 4.17, leave the laboratory through the door (which had
about twice the width of the robot’s diameter), turn and return through the door
back into the laboratory and resume the path.

Door l

l Rabot

5m

FIG. 4.17. ROUTE LEARNING

Cleaning Cleaning tasks require the robot to cover as much floorspace as possible.
For large, open spaces random exploration might be sufficient to accomplish the
task over time. However, it is possible to train FortyTwo to cover floorspace in a
more methodical manner.
Using the same training method as before, the robot was trained to move along
a corridor in the Computer Science Department in the manner shown in fig-
ure 4.18.

FIG. 4.18. CLEANING OPERATION

As before, learning is fast and the robot acquires the competence in a few tens -

of learning steps.

3 The problem of “perceptual aliasing”, which describes the fact that two different places may
appear identical to the roboft’s sensors, is discussed in section 7.3.2.
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Conciusions Training, rather than programming has a number of advantages. First

of all, the Pattern Associator used here learns extremely fast; within a few learn-
ing steps meaningful associations between inputs and outputs develop.

Furthermore, it is able to generalise, i.e. to acquire input-output associations
for input situations that have not been encountered explicitly. For large sensor
spaces it is practically impossible that the robot encounters all possible sensor
states during the training phase — the generalisation ability of artificial neurat
networks provides a selution to this problem.

Thirdly, as sensor stimuli are directly associated with (analogue} motor re-
sponses, the strength of an association determines the velocity of the action. This
means that the robot moves fast in familiar territory, and slowly in unfamiliar ter-
ritory; that the robot turns rapidly if nearby obstacles are detected, and gently in
the presence of distant ones. This property is emergent, and not a design feature
of the controller.

In addition to these points, “programming through teaching” provides a sim-
ple and intuitively clear man-machine interface. As the operator is able to in-
struct the machine directly, without the need of a middle man (the programmer),
the risk of ambiguities is reduced.

And finally, through supervised training of artificial neural networks, an ef-
fective control strategy for a mobile robot can be established, even if explicit
conirol tules are not known.

4.4.3 Case Study 3.

FortyTwo: Learning Internal Representations of
the World Through Self-Organisation

For many robotics applications, for example those of object identification and
object retrieval, it is necessary fo use internal representations of these objects.
These models — abstracted (i.e. simplified) representations of the original —- are
to capture the essential properties of the original, without carrying unnecessary
detail.

The “essential properties” of the original are not always directly available to
the designer of an object recognition system, nor is it always clear what consti-
tutes unnecessary detail. In these cases the only feasible method is that of model
acquisition, rather than model installation.

In this third case study, therefore, we present experiments with a self-organising
structure that acquires models in an unsupervised way through robot-environment
interaction. User predefinition is kept at a minimum.

In this particular instance, FortyTwo's task was to identify boxes within its
visual field of view, and to move towards them. No generic model of these boxes
was used, Instead a mode! was acquired through a process of unsupervised Iearn-
ing in an artificial neural network.

Experimental Setup FortyTwo’s task was to determine whether or not a box was

present in its visual field of view, and, if present, to move towards the box. The
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camera was the only sensor used. The boxes carried no pameular dlstmguxshmg

features. i
The trainable object recognition system shown in figure 4.19, based on a self-

organising feature map, was used to achieve this.

i " Orig}nai image :

" Bdge Dotécted Image

Iﬂput Vef:tor Generanan e
: (frem Hm‘tegrams}

- Network Response 1

FIG. 4.18. THE BOX RECOGNITION SYSTEM

Vision Dala Preprocessing Sysiem As a first processing step, the raw grey

level image of 320 by 200 pixels was reduced to 120 by 80 pixels by selecting

3m. R
The reduced grey level image was then subjected to a convolution with the

edge-detecting template shown in figure 4.20, where each new pixel value 1s' o
‘determined by eguation 4.18. o :

et+1)=|(c+ f+i)—(a+d+g)|-

The edge-detected image was then coarse coded by averaging the plxel va]ues' :
of a 2x 2 square, yielding an image of 60 by 40 pixels. :

an appropriate window that would show the target object at a distance of about . S
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FIG.4.20. EDGE DETECTING TEMPLATE

Following the coarse coding stage, we computed the average pixel value of
the entire image, and used this value to generate a binary image (such as the one
shown in figure 4.21) by thresholding.

FiGi. 4.21. BINARY IMAGE

Finally, by computing the histogram along the vertical and horizontal axis of
the binary image, we obtained a 60+40 element long input vector, which was
used as input to our box detection algorithm. This is shown in figure 4.22.

Vertical Histogram (60) Horizental Histogram(40)

FIG. 4.22. INPUT TO THE BOX-DETECTING SYSTEM

The Box Detection Mechanism We then used this 100-element long input vector
as an input to a self-organising feature map (SOFM) of 10 by 10 units (see
section 4.2.3). The learning rate was set to 0.8 for the first 10 leaming steps,
after that to 0.2 for the entire remaining training peried. The neighbourhood
around the winning unit within which an update was performed remained static
as £ throughout the entire training period.
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The idea behind this was, of course, to develop different network résp'dr';'se's
for images containing boxes than to images containing no boxes — based" “on.
self-organisation, and without any a priori model installation at all. '

Experimental Resuits A test set of 60 images (30 with boxes, 30 without — see
figure 4.23) was used to train the network, and evaluate the system’s ability to
differentiate between images containing boxes, and those not containing boxes.

FIG.4.23. TWO EXAMPLE IMAGES AND THE NETWORK'S RESPONSE TO THEM. THE GREY-
LEVEL CODING INDICATES THE STRENGTH OF A UNIT’S ACTIVATION.

As can be seen in figure 4.23, the network’s response in both cases is similar,
but not identical. The difference in network response can be used to classify an
image.

Fifty images of aligned boxes were used for the training phase of the network,
of the remaining 10 test images all were comectly classified by the system.

In a second set of experiments, boxes were placed in various positions and an-
gles. The training set consisted of 100 images, the test set contained 20 images. :
In the case of images showing boxes, 70% of all test images were classified .
correctly, 20% were wrong, and 10% were “not classified” (i.e. the excitation™
patterns of the SOFM neither resembled the “box” pattern, nor the “no box”

- pattern). Of the images not showing boxes, 60% were classified correctly, 20% ..

were incorrectly classified and 20% were not classified. L

To assess the ability of the system to classify images under more “realistic” ' .
situations, we conducted a third set of experiments, in which images were used -
that were similar to those in the previous experiment, i.e. they contained i images:
of boxes in varying positions and angles. In addition to this, images of stairs;
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doors and other objects that had similarities with boxes were included (“diffi-
cult” images).

The training set consisted of 180 images, the test set comprised 40 images. Of
the “box” images, 70% were classified correctly, 20% were incorrectly classified
and 10% were not classified at all.

Of the “no box” images, 40% were classified correctly, 55% were incorrectly
classified as “box” and 5% were not classified.

Associating Perception with Action Next, we were interested to use the system
to guide the robot towards boxes, if any were identified within the image.

In SOFMs, this can be achieved by extending the input vector by adding an
action component to it. The entire input vector (and therefore the weight vector
of each unit of the SOFM) then contains a perception-action pair. In the training
phase, the robot is driven manually towards a box in its field of view. Input
vectors are generated by combining the preprocessed vision input and the user-
supplied motor command.

In the recall phase, the robot is then able to move towards a box autonomously,
by determining the winning unit of the SOFM (i.e. that unit that resembles the
current visual perception most closely), and performing the motor action asso-
ciated with that unit. Our observation was that ForryTwo was well able to move
towards a single box in its field of view, regardless of orientation of the box, or
initial orientation of the robot. As the robot approached the box, lateral move-
ments of the robot decreased, and the approach became faster and more focused,
until the box filled the entire field of view, and thus became invisible to the sys-
tem, The robot approached boxes reliably under these conditions.

However, the robot could get confused by other box-like objects in the field
of view (like the stairs in our robotics laboratory). In this case, the robot would
approach the misleading object in question, to abandon it later when the error
was detected. At this stage, however, the robot was often no longer able to detect
the original box, because it had moved too far off the direct approach route.

Conclusions Developing internal representations is essential for many robotics
tasks. Such models of the original objects simplify computation through their
abstraction properties. In order to be useful, models need to capture the essential
properties of the objects modelled whilst eliminating unnecessary detail.

As these characteristic properties are often not directly accessible to the de-
signer, methods of {(subsymbolic) model acquisition, rather than model installa-
tion are a possibility.

The box recognition system discussed here does not use any symbolic repre-
sentations, and only very general information is supplied at the design stage (i.e.
edge detection, thresholding and histogram analysis of images). Instead, mod-
els are acquired autonomously by clustering sensory perception, using a self-
organising feature map.

The experiments showed that the acquired models could identify target objects
with good reliability, provided the images contained no misleading (i.e. box-like)
information.

4 Robot Learning: Making Sense of Raw Sensor Data

Boxes are very regular objects. Whether a snnp'ie sys ern such as -
scribed in this case study can construct representations of more complex obie
(such as, for instance, people), is not clear. However, these experiments demon=-
strate that a robot can build internal representations of objects in its environment, -
without a priori knowledge, and without human support.

Case Study 3: Further Reading

= Ulrich Nehmzow, Vision Processing for Robot Learning, Industrial Robot,
Vol. 26, No. 2, pp. 121-130, 1999.

4.5 Exercise 3: A Target-Following,
Obstacle-Avoiding Robot

A mobile robot is equipped with two tactile sensors, one on its left side, and one
on its right side. These sensors return “+1” when they touch something, other-
wise “0”. In addition to this, the robot has a centrally mounted beacon sensor,
which can detect whether a beacon (which is placed somewhere in the environ-
ment) is to the right or to the left of the robot. The beacon sensor returns *-1”
if the target is to the left, and “+1” if the target is to the right of the robot. Due
to the asymmetries of the real world, the beacon sensor will never perceive the
beacon as absolutely dead ahead, and therefore no third value for “ahead” exists.

The robot’s motors will turn forward if a “4+1” signal is applied, and back-
wards on a “-17” signal. The robot is shown in figure 4.24.

Ok

FIG. 4.24. A ROBOT WITH TWO TACTILE SENSORS AND ONE BEACON SENSOR
The task of the robot is to move towards the beacon, avoiding obstacles along
the way.

+ State the truth table required to achieve this function.
« Design an artificial neural network, using McCulloch and Pitts neurons, to
implement the target seeking, obstacle avoiding robot.

The solution is given in appendix 2.2 on p. 218.
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That the robot is moving towards a wall at the end of the run can be deduced
from the fact that the distance readings of the front sensor are decreasing con-
stantly after time step 40.

Whether or not the doors were open in the experiment is not quite so easy to
decide. The depth of the doors is measured at about 10 cm, which indicates they
were closed. However, the beam of the side-looking sonar may not be narrow
enough to pass through the doorway, and therefore detect the door posts, even if
the door itself is open.

Robot Learning

Full Obstacle Avoidance, using McCulloch and Pitts
Neurons

The truth table fo be implemented is shown in table 1.

LW RW LM RM
o0 0 1 1
o0 1 -1 1
1 ¢ 1 -1
1 1 -1, -1

Table 1. TRUTH TABLE FOR FULL OBSTACLE AVOIDANCE

Line one of this truth table indicates that the threshold @ must be below zero.

As before, we choose @ = —0.01. We determine the weights wrw and wew
for the left motor neuron here. The weights for the right motor neuron are found
analogously.

Lines two, three and four of the truth table translate into the following three
inequalities:

Wrw < @
wWLw > @
wrw + wrw < e

These three inequalities can be satisfied with, for example, wrw = 0.3 and
wpw = —0.b.

A Target Foliowing, Obstacle Avoiding Robot

The truth table for the target seeking, obstacle avoiding robot described in sec-
tion 4.5 is given in table 2. This robot will obviously never execute a forward

movement, because the beacon sensor either indicates “steer left” or “steer right”,

which will be executed as a twm. Therefore, we can restrict the truth table to the

Answers to Exercises Sy
LWRWBS LM
o 0 - -1
o o0 1 1
o0 1 -1 -1
0 1 1 -1
1 0 -1 1
1 0 1 1
1 1 -1 don'tcare
1 1 1 don'tcare

Table 2. TRUTH TABLE FOR TARGET SEEKING AND OBSTACLE AVOIDANCE

function of the left motor, and later implement the exact opposite function of the
left motor for the right motor.

We will now attempt to implement this truth table using one McCulloch and

Pitts neuron per motor — again looking at the left motor only. The structure of
this network is shown in figure 2.

~
Wh
— | 0,1 |} LM
V
FIG. 2. STRUCTURE OF THE REQUIRED NEURON FOR THE LEFT MOTOR

Lines 1 and 2 of the truth table yield wg > @ (with an arbitrary selection of -
@ = —0.01 here). 8

Line 5 of the truth table yields wy, — wp > @, and from line 4 of the truth
table we can determine the inequality wy + wg < 6.

This allows us to select three weights that satisfy the requirements, for exam- _.:.'j
ple wy, = 5, wp = 3 and wg = —5. Going through all lines of the truth table i
confirms that these weights would implement the required function. '

The final network structure is shown in figure 3. Weights for the ﬁght .'m'c;t“o'
are the mirror image of those for the left motor (taking into account,: of course
that the beacon sensor has a “+1/-1” encoding for direction).
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FIG.3. A TARGET SEEXING MOBILE ROBOT THAT AVOIDS OBSTACLES, USING MCCULLOCH
AND PITTS NEURONS.

Error Calculations
and Contingency Table Analysis

Mean and Standard Deviation

A robot is stationary in front of an obstacle, and cbtains the following range
readings from its sonar sensors (in cm): 60, 58, 58, 61, 63, 62, 60, 60, 59, 60,
62, 58.

Using equation 7.2, we can compute the mean distance measured as
o= 721 = 60.08 cm. Equation 7.3 can be used to compute the standard devi-

ation as o = 4/ ﬁ30.92 = 1.68. This means that 68.3% of all range values lie

in an interval of (60.08 :£ 1.68)cm. . '
The $tandard error is & = 0.48 (equation 7.4}, indicating that with a certainty
of 68.3% the true mean lies in the interval 60.08 cm £ 0.48 cm.

Classifier System

A mobile robot has been equipped with a fixed algorithm to detect doorways, us-
ing an on-board CCD camera. The probability of this system producing a correct
answer is the same for each image.

The system is initially tested using 750 images, half of which contain a door-
way, and half of which don’t. The algorithm produces correct answers in 620
cases.

In a second series of experiments, 20 images are presented to the robot. What
is the probability that there will be two classification errors, and which number
of errors is to be expected in classifying those 20 images?

Answer: If a classifier system is used in n independent trials to classify data,
it will produce n answers, each of which is either correct or incorrect. This is a
binomial distribution.
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We define p as the probability of producing an incorrect answer. In this case

pm1—%g-=0.173.

The probability p® of making 2 mistakes in twenty classifications can be
determined using equation 7.5: p3° = (20202'),2,0 173%(1 - 0.173)20-2 = (.186.
The number of errors p to be expected in 20 experiments is given by equa-

tion 7.6 as yp = np = 20 - (1 — £8) = 3.47.

T-Test

A robot control program is written to enable robots to withdraw from dead ends.
In a first version of the program, the robot takes the following time in seconds to
escape from a dead end: x=(10.2, 9.5, 9.7, 12.1, 8.7, 10.3, 9.7, 11.1, 11.7, 9.1),
After the program has been improved, a second set of experiments yields these

“results: y=(9.6,10.1, 8.2, 7.5, 9.3, 8.4).

Do these results indicate that the second program performs significantly bet-
ter?

Answer: Assuming that the outcome of the experiments has a normal (Gaus-
sian) distribution, we can apply the T-test to answer this question.

#e = 10.21,0, = 1.112, yty, = 8.85, 0, = 0.977.

Applying equation 7.12 yields:

T oo 10.21--8.85 10x6(10+6—2) =9 .
4/ (10-1)1.1128 {6 "10.9972 10+6 2456

As bk = 104+ 6 ~ = 2.145 (from table 7.1). The inequality
12.456] > 2.145 holds, the hypothesm Hy (ie. pz = py) is rejected, which
means that the second program performs significantly better than the first one,
the probability for this statement to be erroneous is 0.05.

Analysis of Categorical Data

x* Analysis

A mobile robot is placed in an environment that contains four prominent land-
marks, A, B, C and D. The robot’s landmark identification program produces
four responses, «r, 3,7 and 4 to the sensory stimuli received at these four loca-
tions. In an experiment totalling 200 visits to the various landmarks, the follow-
ing contingency fable is obtained (numbers indicate the frequency of a particular
map response obtained at a particular location):

Is the output of the classifier significantly associated with the location the
robot is at?

Answer: Following equation 7.14 n o = 423 = 6.8 nyyg = 2078 = 15.6,

and so on (the table of expected values is table 4).




