Differences between revisions 29 and 97 (spanning 68 versions)
Revision 29 as of 2017-10-16 15:13:41
Size: 15317
Editor: JunHu
Comment:
Revision 97 as of 2021-11-05 10:06:16
Size: 7828
Editor: JunHu
Comment:
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
## page was renamed from CSC
|| /!\ Due to the situation of COVID-19, considering that we might have difficulties in providing good quality support for the new PhDs in 2021, the department of Industrial Design of TU Eindhoven has temporarily decided not to open positions for CSC supported Ph.D. and PDEng applications, with an exception for a research topic as described below. We will reevaluate the situation in 2021. /!\ ||
Line 3: Line 6:
{{attachment:tue.jpg||align="right"}}'''PhD in'''  {{attachment:tue.jpg||align="right"}}   '''PhD in'''
Line 5: Line 9:
'''Creating intelligent systems, products and related services in a societal context'''  '''Design of Systems with Emerging Technologies in a Societal Context'''
Line 7: Line 11:
'''at Department of Industrial Design, Eindhoven University of Technology'''  '''at Department of Industrial Design, Eindhoven University of Technology'''
Line 9: Line 13:
'''2018'''  '''2021'''
Line 11: Line 15:
<<TableOfContents>>   .


<<TableOfContents>>
Line 14: Line 21:
Eindhoven University of Technology (TU/e) is among the top 100 universities according to the QS Global World Ranking. It is located in a highly industrialized region, known as ‘Brainport’. This region is internationally recognized as a top technology area with a special focus on the integration of design and technology. The department of Industrial Design was established in close collaboration with the technological industry, and, because of this, focuses its research on the ''Design of Systems with Emerging Technologies in a Societal Context''.
Line 15: Line 23:
The department of Industrial Design (ID) of the Eindhoven University of Technology (TU/e) is located in a highly industrialized region, known as ‘Brainport’. This region is internationally recognized as a top technology area with a special focus on the integration of design and technology. The department was established in close collaboration with the technological industry, and, because of this, focuses its research on the Design of Intelligent Systems, Products and related Services in a societal context. With these intelligent systems, it aims at offering new, breakthrough possibilities leading to societal transformations. === PhD program Industrial Design ===
Changing demographics and social structures are putting several key human values of modern society under serious pressure; these include social inclusion, sustainable healthcare and healthy ageing. Department of Industrial Design envisions a world where these fundamental human values are addressed through interactive and evolving product-service-systems. The goal is to empower people towards a state of complete physical, mental, emotional and social well-being, through the creation of interactive and (co-)evolving systems where future technologies and humans co-adapt to achieve qualities beyond utility and usability.
Line 17: Line 26:
Innovative solutions today increasingly address a complex web in which products, services, technologies and user needs are interwoven. This, in turn, means that innovation is increasingly dependent on agreements within larger groups of stakeholders. Companies can no longer rely solely on technology breakthroughs and incremental product development. Effective differentiation and real added value for the consumer are achieved by incorporating end-user insights in product innovation. This takes on an added significance when designing solutions for the emerging connected, digitally enabled world.

Products and services are increasingly overlapping, everyday products are more intelligent and adaptive, and the focus is on ‘systems' rather than stand-alone devices. Additionally, user needs are evolving over time. Maintaining simplicity and understanding the user in such a landscape becomes a challenge. The need to be connected and the need for the customer to be an integral part of the value chain has forced all leading industrial and political bodies to incorporate human values, needs, and desires from the very beginning of the innovation process. Innovation in this climate requires social science, design, engineering, and business to be brought together in an interdisciplinary way. Industrial design should simultaneously support and catalyze the contributions of all participants, enabling a collaborative exploration of potential futures that can be translated to each partner's individual perspective.

As society exits the Industrial Age, so the excesses of daily production and consumption patterns are becoming evident. The ‘old-new' way of doing things, based on productivity and more of everything and faster, was based on the metaphor of the machine. Today, the issue is about relevant and meaningful innovation for society, for cultures, and for people. Integration of the Design, Engineering and Social Sciences perspectives will enable us to create intelligent systems, products, and related services in a societal context based on ‘human values' rather than on the ‘efficiency' criterion that has saturated today's design.
As a PhD student, you will work on research topics related to the aspects above by exploring future technology (Research-through-Design) through probing prototypes in everyday-life settings (e.g. Experiential Design Landscapes).
Line 24: Line 29:
Applicants to this PhD research shall have a background in industrial design, digital arts and interactive media, human-computer interaction, computer science, information technology, electrical engineering, biomedical engineering, mechanical engineering and physics.
Line 25: Line 31:
Applicants to this PhD research shall have a background in industrial design, digital arts and interactive media, human-computer interaction, computer science, information technology, electrical engineering, biomedical engineering, mechanical engineering and physics. == Research Topic ==
We are aiming at recruiting one CSC PhD in 2021 for a Double PhD degree in collaboration with Zhejiang University
Line 27: Line 34:
== Research Topics == In the context of the ZJU-TU/e Joint Research Institute of Design, Optoelectronics and Sensing (IDEAS), the TU/e candidates will join the Collaborative efforts in design research on health-related applications utilizing the advances in optoelectronics and sensing technologies, aiming at double degrees from TU/e and ZJU, under the condition that the requirements of the degree conferment from each Institution are completed, complying to relevant regulations.
Line 29: Line 36:
We are aiming at recruiting up to 8 CSC Ph``Ds in 2016. The applicants can apply for one of the following topics:

 1. ''Interaction with Shared Systems''. Light is important for people. The quality of lighting is very relevant for our productivity, well-being, comfort, and health. Modern connected lighting systems bring many opportunities for the manipulation of lighting, but make the interaction with lighting also very complex. State-of-the-art interfaces are often based on smartphone applications. Although these have many advantages, for instance related to personalization and availability, they do not take in account that lighting is essentially a Shared System: multiple users, with different preferences and intentions can change the light (simultaneously or by turn taking) and if one user changes the light, the resulting light affects others as well. People are social, they are able to negotiate and to coordinate their actions and behavior based on social skills. An important part of these skills is our ability to access and process the Social Information that is available in our environment. Social Information is related to presence, activity, preference, timing, mutual relationship etc. of other people in our environment. In this project we investigate modern, interactive, connected lighting systems to obtain better understanding of the interaction with shared systems. You will design interfaces for lighting that are able to express social information, that change appearances or help to make interaction decisions based on the available social information. You will evaluate their effect on (perceived) light control in home or office contexts.


 1. ''Wearables for Vitality''. One of the major problems regarding the long-term health perspective of adult people in developed countries is the fact that many people lead a largely sedentary lifestyle. There is ample evidence that this can lead to (the onset of) chronic diseases such as cancer, diabetes and/or cardio-vascular problems. This is sedentary lifestyle so deeply embedded in many cultures that many people are not even remotely aware how much they are sitting and what this means for their health. Thanks to the development of recent sensor technology the registration of the actual (lack of-) activities is not so much of a problem; representing the accumulated information to users in a (persuasive) manner that influences daily work-patterns/rituals/etc. definitely is. Although, in theory, the representation of information via commonly used devices (such as smartphones) is definitely possible this project aims at more unobtrusive and persuasive data representation via, for example, integration of data representation into active wearables thus creating awareness of the (lack of) activities not only on a cognitive level but also on a subconscious level allowing a faster and more thorough integration into daily life.

 1. ''Motivational Technologies for Healthy Eating Behaviours among Older Adults''. In this project you will work on developing technology probes to motivate sustainable behaviour change for healthy eating. Earlier research has demonstrated that eating behavior is very much influenced by hedonic and homeostatic control of eating. Related pathological, physiological and psychological factors can influence the way we eat. For example, for older adults living alone or moving to care homes, the chance that they will acquire less nutrition in their daily food intake is much higher than those are still able to cook themselves and eat with partners. Healthy eating behavior can stimulate more physical activities and prevent chronic diseases such as heart diseases or cancers. At the moment there are various healthy apps developed for healthy young people to track eating behaviors. Such a solution may not be immediately applicable for the older adults given the well-known technology acceptance challenge. Together with our industrial partner from the food technology segment, we are aiming to create a motivational solution to support and facilitate a healthy eating behavior among older adults. A PhD student working in the ‘motivational technologies for healthy eating behaviours among older adults’ project should have a strong interest in digital technologies (e.g. with master degree related to computer science) and design for and with target user groups with special needs.

 1. ''Healthy working space''. In this project you will work on developing contextual aware solutions to stimulate more physical activities between high level of intensities to moderate and low level of intensities. “Sedentary behavior is a new smoking.” Early research has called for promoting a dynamic daily routine and using a social-ecological approach for healthy working space. Many wearable devices are available already in the market for people to sense and monitor their daily activities and promote active lifestyle. Early research has also demonstrated that personalization motivational strategies are very important to promote healthy working space. How to turn the insights into solutions into acceptable and adoptable interventions in working spaces is the challenge here. Together with our industrial partner from the food technology segment, we are aiming to create a motivational solution to support and facilitate a healthy eating behavior among older adults. A PhD student working in the ‘healthy working space’ project should have a strong interest in digital technologies (e.g. with master degree related to computer science) and a strong affinity with design.

 1. ''Shared control for autonomous driving''. One trend in the development of autonomous driving is to take the human completely out-of-the-loop. However, we believe that there are good grounds to keep the human in the loop, at some level of control (in particular tactical control), even in the case of full automation. One reason to do so is that the technology may not be flexible enough to always behave according to the human needs and preferences, which may vary across people and situations. For that reason, we need to develop a way to enable the occupant and the automated driving system to enter into a dialogue to coordinate decisions. The aim of this project to explore relevant use cases, to investigate in which cases people want to be able to influence the behaviour of an automated vehicle, and to develop and evaluate the interface supporting the human-system dialogue by means of studies with a driving simulator. Profile: Industrial design or human-computer interaction; affinity with technology (programming and electronics) and doing experiments for validation of concepts and interfaces.

 1. ''Multi-Device Crowdsourcing: Empowering Crowdworkers''. Crowdsourcing can be defined as a task that can be given to a large, anonymous group of users, connected through the Internet and the users' aggregated response constitutes a solution to the task. Crowdsourcing has been applied from its very beginning to a plethora of creative industries; designing clothes [Threadless]; designing graphics [99designs]; photography and animation [iStockphoto]. In spite of the all the existing services, crowdsourcing is still in its infancy. In this project you will be asked to explore ways in which crowdsourcing can support designers and design work. Such a project raises several research questions: what part of designer's work can be crowdsourced? How much of the designer's context is necessary for crowdworkers to be able to perform the requested tasks? What are the privacy concerns and how can they be addressed? The project shall proceed following an action research approach, designing, developing and deploying a platform for crowdsourcing, and using it in the context of design projects. Requirements for candidates: Affinity with software development, online communities/social media, interaction design is required.

 1. ''Seamless interaction in everyday life''. Smartphones and tablets are penetrating all facets of everyday life. The functionalities of these devices have made our lives arguably easier while at the same time they made us more distracted from our direct surroundings. This project will rethink and redesign the way we interact with the digital world. Current devices are usually designed to be operated with focused attention, barely leaving any attention to be devoted elsewhere. Recently, such systems have also begun to involve autonomous system behaviour that takes place outside the user’s behest. In everyday life, people perform actions with varying levels of attention. For example, we routinely wash our hands in our periphery of attention while focusing on having a conversation, or we might consciously focus on washing our hands if trying to remove paint from them. Interactive systems currently cover only two extreme ends of a full spectrum of human attention abilities. With computing technology becoming ubiquitously present, the need increases to seamlessly fit interactions with technology into everyday routines. This project will explore how to design interfaces that can be operated at varied levels of attention. Additionally, it will explore interactions that can shift between focused attention, periphery of attention and autonomous system behaviour. The project will focus on making prototypes which can be used by people in their home environment. These prototypes should make everyday interactions with technology more seamlessly embedded in people’s everyday routines.

 1. ''Connected Everyday Objects for Managing Stress in Children''. Research has shown that the use of robots is effective in helping children in mitigating stress and anxiety, and in improving their social skills, especially for children with Autism Spectrum Disorders (ASD). Both TU/e and ZJU have a track record in this research area, from the perspectives of human-computer interaction and utilizing new sensing technologies. The objectives of the proposed joint research are two-fold:
  * The first objective of this project is to embed the proven benefits of the robotic technologies with the everyday products that are equipped with advanced non-invasive sensing technologies that can provide context based on physiological measurements and other information that this sensing can provide, for managing stress in Children with ASD. We will also investigate how the collected data could be utilized in detecting patterns and abnormalities and in engaging social ties and professionals.
  * The second objective is to utilize the same technical platform for managing stress in Chinese children with high study load and expectations. In China, primary school children have to work hard even during the off school hours with heavy study load, due to the highly completive education system with emphasis on school performance, intolerance of failure and high expectations from parents, relatives and friends. Connected everyday objects would help the children to manage their stress with playful interaction. Connectivity would provide the information to social ties such as parents and teachers for proper social intervention if necessary, and for proactive co-management of the stress of children.
Line 50: Line 42:
It is a two-step process:
Line 51: Line 44:
If you are interested in applying, please first address your interest to dr. Jun Hu: j.hu@tue.nl as early as possible for questions and guidance, and later prepare the following documents:  1. Applying with us. According to the quality of the application documents, you might be invited for an interview (video conferencing, if necessary). If the interview gives positive advice, you will be offered with the admission letter, with a tuition fee waiver.
 1. Applying at CSC. We will help you adjust, refine and improve your research proposal, and help you improve the quality of other application documents. We will assist and advise you throughout the CSC application process.
 

If you are interested in applying, please first address your interest to dr. Jun Hu: j.hu@tue.nl as early as possible for questions and guidance, and later prepare the following documents and submit them to j.hu@tue.nl, with "CSC PhD application 2020" in the subject:
Line 58: Line 55:
 1. Any indication of your English level (IELTS 6.5 or TOEFL 95, or equivalent) according to the requirements from CSC (http://www.csc.edu.cn/) and TU/e. 
 1. If you have a design or art background, portfolio of your design or art work.
 1. Any indication of your English level (IELTS 6.5 or TOEFL 95, or equivalent) according to the requirements from CSC (http://www.csc.edu.cn/) and TU/e.
 1. If you have a design or art background, portfolio of your design or artwork.

If these documents are too big to be attached to an email, you are advised to simply send in a link to a single online ZIP file that contains all the documents.
Line 62: Line 61:

Please notice the  deadlines: '''February 1, 2017 at TU/e'''; Deadline for applying at CSC is April 5, 2017 (http://www.csc.edu.cn/article/709). For a better support for your application, we would encourage you to apply as early as possible.
Please notice the deadlines: '''February 15, 2021 at TU/e'''; for the deadline for applying at CSC, please check the CSC website http://www.csc.edu.cn/. For better support for your application, we would encourage you to apply as early as possible.
Line 66: Line 64:
Line 69: Line 66:
More about research at ID, TU/e: http://wiki.id.tue.nl/CSC/ResearchAtID More about research at ID, TU/e: https://www.tue.nl/en/our-university/departments/industrial-design/research/
Line 71: Line 68:
More about PhD programs at ID, TU/e: http://wiki.id.tue.nl/CSC/PhDProgramsAtID

More about the requirements in applying the Scholarship from China Scholarship Council (CSC) for Chinese PhD candidates: http://www.csc.edu.cn
More about the requirements in applying for the Scholarship from China Scholarship Council (CSC) for Chinese PhD candidates: http://www.csc.edu.cn

/!\ Due to the situation of COVID-19, considering that we might have difficulties in providing good quality support for the new PhDs in 2021, the department of Industrial Design of TU Eindhoven has temporarily decided not to open positions for CSC supported Ph.D. and PDEng applications, with an exception for a research topic as described below. We will reevaluate the situation in 2021. /!\

Eindhoven University of Technology (TU/e) enables excellent Chinese students to obtain their PhD degrees at TU/e with a 4-year scholarship from the CSC. Students from all Chinese universities are eligible for this program. The program aims to foster long-term research co-operation between Eindhoven University of Technology (TU/e) and Chinese universities. Students who receive a scholarship are provided with a living allowance as prescribed by the Chinese Government for the term of the scholarship, return airfare to the Netherlands by the most economical route, student visa fees and the cost of health insurance for international students.

tue.jpg

  • PhD in

    Design of Systems with Emerging Technologies in a Societal Context

    at Department of Industrial Design, Eindhoven University of Technology

    2021

Introduction

Eindhoven University of Technology (TU/e) is among the top 100 universities according to the QS Global World Ranking. It is located in a highly industrialized region, known as ‘Brainport’. This region is internationally recognized as a top technology area with a special focus on the integration of design and technology. The department of Industrial Design was established in close collaboration with the technological industry, and, because of this, focuses its research on the Design of Systems with Emerging Technologies in a Societal Context.

PhD program Industrial Design

Changing demographics and social structures are putting several key human values of modern society under serious pressure; these include social inclusion, sustainable healthcare and healthy ageing. Department of Industrial Design envisions a world where these fundamental human values are addressed through interactive and evolving product-service-systems. The goal is to empower people towards a state of complete physical, mental, emotional and social well-being, through the creation of interactive and (co-)evolving systems where future technologies and humans co-adapt to achieve qualities beyond utility and usability.

As a PhD student, you will work on research topics related to the aspects above by exploring future technology (Research-through-Design) through probing prototypes in everyday-life settings (e.g. Experiential Design Landscapes).

Expected Background

Applicants to this PhD research shall have a background in industrial design, digital arts and interactive media, human-computer interaction, computer science, information technology, electrical engineering, biomedical engineering, mechanical engineering and physics.

Research Topic

We are aiming at recruiting one CSC PhD in 2021 for a Double PhD degree in collaboration with Zhejiang University

In the context of the ZJU-TU/e Joint Research Institute of Design, Optoelectronics and Sensing (IDEAS), the TU/e candidates will join the Collaborative efforts in design research on health-related applications utilizing the advances in optoelectronics and sensing technologies, aiming at double degrees from TU/e and ZJU, under the condition that the requirements of the degree conferment from each Institution are completed, complying to relevant regulations.

  1. Connected Everyday Objects for Managing Stress in Children. Research has shown that the use of robots is effective in helping children in mitigating stress and anxiety, and in improving their social skills, especially for children with Autism Spectrum Disorders (ASD). Both TU/e and ZJU have a track record in this research area, from the perspectives of human-computer interaction and utilizing new sensing technologies. The objectives of the proposed joint research are two-fold:

    • The first objective of this project is to embed the proven benefits of the robotic technologies with the everyday products that are equipped with advanced non-invasive sensing technologies that can provide context based on physiological measurements and other information that this sensing can provide, for managing stress in Children with ASD. We will also investigate how the collected data could be utilized in detecting patterns and abnormalities and in engaging social ties and professionals.
    • The second objective is to utilize the same technical platform for managing stress in Chinese children with high study load and expectations. In China, primary school children have to work hard even during the off school hours with heavy study load, due to the highly completive education system with emphasis on school performance, intolerance of failure and high expectations from parents, relatives and friends. Connected everyday objects would help the children to manage their stress with playful interaction. Connectivity would provide the information to social ties such as parents and teachers for proper social intervention if necessary, and for proactive co-management of the stress of children.

Application Procedure

It is a two-step process:

  1. Applying with us. According to the quality of the application documents, you might be invited for an interview (video conferencing, if necessary). If the interview gives positive advice, you will be offered with the admission letter, with a tuition fee waiver.
  2. Applying at CSC. We will help you adjust, refine and improve your research proposal, and help you improve the quality of other application documents. We will assist and advise you throughout the CSC application process.

If you are interested in applying, please first address your interest to dr. Jun Hu: j.hu@tue.nl as early as possible for questions and guidance, and later prepare the following documents and submit them to j.hu@tue.nl, with "CSC PhD application 2020" in the subject:

  1. Curriculum Vitae
  2. Research plan according to one of the aforementioned topics (no more than 4-pages of A4 in English, Including Background, Objectives and Research questions, Methodology, Planning, Expected results, Feasibility, Future Plan after your PhD, and References).
  3. Motivation letter (no more than 1-page A4).
  4. Copy of Master Degree (if available, or a letter from your university to prove that you are expected to graduate in due time).
  5. Letter of recommendation from your supervisor at the home university.
  6. Any indication of your English level (IELTS 6.5 or TOEFL 95, or equivalent) according to the requirements from CSC (http://www.csc.edu.cn/) and TU/e.

  7. If you have a design or art background, portfolio of your design or artwork.

If these documents are too big to be attached to an email, you are advised to simply send in a link to a single online ZIP file that contains all the documents.

Deadlines

Please notice the deadlines: February 15, 2021 at TU/e; for the deadline for applying at CSC, please check the CSC website http://www.csc.edu.cn/. For better support for your application, we would encourage you to apply as early as possible.

For more information

For more information, please contact dr. Jun Hu: j.hu@tue.nl

More about research at ID, TU/e: https://www.tue.nl/en/our-university/departments/industrial-design/research/

More about the requirements in applying for the Scholarship from China Scholarship Council (CSC) for Chinese PhD candidates: http://www.csc.edu.cn

JunHu: CSC/2021 (last edited 2021-11-05 10:06:16 by JunHu)