Introduction to TRIZ

F.L.M. Delbressine

February 9, 2017

- Introduction
 - Introduction to TRIZ
- 2 Contradictions
 - Introduction
 - Spotting Contradictions
 - Types of Contradictions
 - The 39 contradictions
 - Resolving Physical Contradictions
- 3 The 40 Inventive Principles
 - Introducing the 40 Inventive Principles
 - Applying the 40 Inventive Principles to Contradictions

Introduction to TRIZ

After analysing:

- 50000 patents
- 40 ways to resolve contradictions- the 40 Inventive Principleswere uncovered.

TRIZ thinking is achieved by considering two questions:

- What do I want?
- How can I get all the things I want without changing anything?

Introduction Spotting Contradictions Types of Contradictions The 39 contradictions Resolving Physical Contradictions

Solving Contradictions with the 40 Principles

- Finding and defining contradictions
- Understanding the two types of contradictions
- Solving contradictions by applying the 40 Inventive Principles

Spotting Contradictions

A contradiction is when you have conflicts in what you want: either

- you want opposites of the same thing or
- as you improve something, something else gets worse.

Examples of contradictions:

- I want a more powerful engine for my car but I don't want it to get heavier
- I want a cup that keeps my coffee hot but doesn't burn my hand
- • •

Two types of contradictions

- A Technical Contradiction: as you improve something, something else gets worse.
 - \Rightarrow Making a car safer by adding more material but it makes the car more heavier
- A Physical Contradiction: when you want opposites of the same thing.
 - \Rightarrow An umbrella needing to be both big and small.

The 39 contradictions

Moving objects: Objects which can easily change position in space, either on their own, or as a result of external forces.

Vehicles and objects designed to be portable are the basic members of this class

Stationary objects: Objects which do not change position in space, either on their own, or as a result of external forces.

Consider the conditions under which the object is being used.

- Weight of moving object
- Weight of stationary object
- Length of moving object
- Length of stationary object
- Area of moving object
- Area of stationary object
- Volume of moving object
- Volume of stationary object
- Speed
- Force

- Stress or pressure
- Shape
- Stability of the object's composition
- Strength
- Duration of action by a moving object
- Ouration of action by a stationary object
- Temperature
- Illumination intensity
- Use of energy by moving object
- Use of energy by stationary object

- Power
- Loss of Energy
- Loss of substance
- Loss of Information
- Loss of Time
- Quantity of substance/the matter
- Reliability
- Measurement accuracy
- Manufacturing precision
- External harm affects the object

- Object-generated harmful factors
- Ease of manufacture
- Ease of operation
- Ease of repair
- Adaptability or versatility
- Device complexity
- Difficulty of detecting and measuring
- Extent of automation
- Productivity

Traditional approach versus TRIZ to contradictions.

Traditional:

- compromise or
- give up

Triz: reapply other people's genius solutions.

How: the 40 Inventive Principles

Resolving Physical Contradictions

In TRIZ you can separate in four ways:

In Time: Having opposite things at the same time.

In Space: Wanting opposite things at the same time but in

different places

On Condition: Sometimes you want opposite things at the same time, in the same place - but for different features of your system.

By System: Understanding that you want opposite things at different levels, for example in the broader context and in the detail

Separation Principles table

Separate in Time:

One solution at one time, the opposite solution at another.

Separate in Space:

One solution in one place, the opposite solution at another.

Separate on Condition:

- Opposite solutions in the same place and at the same time.
- One solution for one element- the opposite for another.

Separate by System:

- Separate by Scale (to Sub-system or Super-system).
- Switch to Inverse System.
- Switch to Another System

The 40 Inventive Principles, 1-20

- Segmentation
- Taking out
- Output
 Local Quality
- 4 Asymmetry
- Merging
- Multi-Function
- Nested Doll
- Counterweight
- Prior Counteraction
- Prior Action

- Cushion
- Equal Potential
- The Other Way Round
- Spheres and Curves
- Dynanism
- Partial or Excessive Action
- Another Dimension
- Mechanical Vibration
- Periodic Action
- Continous Useful Action

The 40 Inventive Principles, 21-40

- Question Through
- Blessing in Disguise
- Feedback
- Intermediary
- Self-service
- Copying
- Cheap, Short-Living Objects
- Replace Mechanical System
- Pneumatics and Hydraulics
- Flexible Membranes and Thin Films

- Porous Materials
- Colour Change
- Uniform Material
- Discarding and Recovering
- Parameter Change
- Phase Changes
- Thermal Expansion
- Boosted Interactions
- Inert Atmosphere
- Composite Structures

The 40 Inventive Principles in one image

The Contradiction Matrix

The Contradiction Matrix (cont.)

Solving Technical Contradictions by using the matrix shows us how to break the link and separate the two parameters – the Inventive Principles suggest ways of improving/changing one without also affecting the other one or making it worse.

The matrix offers these Inventive Principles 40, 26, 27, 40 - Composite Materials

26 - Copying

27 - Cheap Short-Living Objects

1 - Segmentation

Literature

- Haines-Gadd, L., TRIZ For Dummies, John Wiley & Sons Ltd., 2016
- Quantity of the Good of the
- Oxford Creativity, www.triz.co.uk