Dynamic systems and their behaviour

Dr. F.L.M. Delbressine

• • Literature

- J. Sanny and W. Moebs, University Physics, Wm. C. Brown Publishers
- L. Meirovitch, Fundamentals of vibrations, Mc.Graw-Hill.
- S.S. Rao, Mechanical Vibrations, Addison-Wesley
- Wikipedia: http://en.wikipedia.org/wiki/Vibration#Free_v ibration_without_damping

Zero order systems

$$a_0 \cdot Out(t) = b_0 \cdot In(t)$$

$$\frac{Out(t)}{In(t)} = \frac{b_0}{a_0} = k$$

- Examples:
 - Resistor (ideal): V(t)= R*I(t)
 - Spring (ideal): F(t)= k*x(t)

First order systems
$$a_{1} \cdot \frac{dOut(t)}{dt} + a_{0} \cdot Out(t) = b_{0} \cdot In(t)$$

$$\frac{a_{1}}{a_{0}} \cdot \frac{dOut(t)}{dt} + Out(t) = \frac{b_{0}}{a_{0}} \cdot In(t)$$

$$\frac{a_{1}}{a_{0}} = \text{time constant [sec]}$$

- Examples (energy storing):
 - Temperature sensor put in a heated bath
 - Room heating
 - (Dis)charging battery

Temperature sensor put in a cooled bath

$$Q_{Add} - Q_{Loss} = Q_{Heat-up}$$

$$Q_{Loss} = 0$$

$$Q_{Add} = \alpha A (T_e - T_t)$$

$$Q_{Heat-up} = mC \frac{dT_t}{dt}$$

$$\alpha A(T_e - T_t) = mC \frac{dT_t}{dt} = -mC \frac{d(T_e - T_t)}{dt}$$

water

Solution (for the step response)

$$T_e - T_t = (T_e - T_{t_o}) * e^{\frac{-t}{\tau}}$$

$$T_t = T_e - (T_e - T_{t_o}) * e^{\frac{-t}{\tau}}$$

$$\tau = \frac{m * c}{\alpha * A}$$

$$T_{t_o} = \text{sensor temperature at } t = 0$$

Example: room temperature in Simulink

Step response first order system

• • • Response to sine input
$$\tau \frac{dOut(t)}{dt} + Out(t) = k \cdot In(t)$$

$$In(t) = I_0 e^{st}$$

Assume:
$$Out(t) = O_0 e^{st}$$

$$\tau s O_0 e^{st} + O_0 e^{st} = O_0 e^{st} (\tau s + 1) = k \cdot I_0 e^{st}$$

$$\frac{Out(t)}{In(t)} = \frac{k}{\tau s + 1}$$

$$s = i \cdot \omega$$

$$\frac{Out(t)}{In(t)} = \frac{k}{\tau \cdot i \cdot \omega + 1}$$

Second order systems

$$a_2 \cdot \frac{d^2 Out(t)}{dt} + a_1 \cdot \frac{dOut(t)}{dt} + a_0 \cdot Out(t) = b_0 \cdot In(t)$$

$$a_2 \cdot \frac{d^2 Out(t)}{dt} + a_1 \cdot \frac{dOut(t)}{dt} + a_0 \cdot Out(t) = b_0 \cdot In(t)$$

$$\frac{a_2}{a_0} \cdot \frac{d^2 Out(t)}{dt} + \frac{a_1}{a_0} \cdot \frac{dOut(t)}{dt} + Out(t) = \frac{b_0}{a_0} \cdot In(t)$$

$$\sqrt{\frac{a_2}{a_0}} = \omega_0$$
 eigenfrequency of the system

$$\gamma = \frac{a_1}{2\sqrt{a_0 \cdot a_2}}$$
 dampings factor

Tacoma Narrows bridge

Free vibrations, unforced

• • • Simple Harmonic Motion $F(x) = -k \cdot x$

$$F(x) = -k \cdot x$$

Equations of Simple Harmonic Motion

Newton's law, force balance: $-k \cdot x = m \cdot a$

$$a = \frac{dv}{dt} = \frac{d}{dt} \left(\frac{dx}{dt} \right) = \frac{d^2x}{dt^2}$$

$$\frac{d^2x}{dt^2} + \frac{k}{m}x = 0$$

• • Solution: $x(t) = A \cdot \sin\left(\sqrt{\frac{k}{m}} \cdot t + \phi\right)$

$$\frac{d^2x}{dt^2} + \frac{k}{m}x = 0$$

$$\frac{dx}{dt} = A \cdot \sqrt{\frac{k}{m}} \cdot \cos\left(\sqrt{\frac{k}{m}} \cdot t + \phi\right)$$

$$\frac{d^2x}{dt^2} = -A \cdot \frac{k}{m} \cdot \sin\left(\sqrt{\frac{k}{m}} \cdot t + \phi\right)$$

$$-A \cdot \frac{k}{m} \cdot \sin\left(\sqrt{\frac{k}{m}} \cdot t + \phi\right) + \frac{k}{m} \cdot A \cdot \sin\left(\sqrt{\frac{k}{m}} \cdot t + \phi\right) = 0$$

Parameters of Simple Harmonic Motion

$$x(t) = A \cdot \sin(\omega \cdot t + \phi)$$

Angular frequency:
$$\omega = \sqrt{\frac{k}{m}} \text{ in rad/s}$$
 Frequency: $f = \frac{\omega}{2\pi}$

Phase: $\omega \cdot t + \phi$ in rad

Amplitude:
$$A$$
 Period time: $T = \frac{2\pi}{\omega} = \frac{1}{f}$ Time required for one complete oscillation.

• • Solution graphically

Circular Motion and Simple Harmonic Motion

$$x(t) = r \cdot \cos(\theta(t))$$
$$y(t) = r \cdot \sin(\theta(t))$$

$$y(t) = r \cdot \sin(\theta(t))$$

$$Stel: \theta(t) = \omega \cdot t + \phi$$

$$x(t) = r \cdot \cos(\omega \cdot t + \phi)$$

$$y(t) = r \cdot \sin(\omega \cdot t + \phi)$$

• • Grandfather clock

 The oscillations of the pendulum was used to keep time

• • A Simple Pendulum,

Sum of all torques around rotation center:

• • • Solution:

$$\theta(t) = A \cdot \sin(\omega \cdot t + \phi)$$

A = amplitude

 ϕ = phase constant

$$\omega = \text{angular frequency} = \sqrt{\frac{g}{l}}$$

Compare with:
$$x(t) = A \cdot \sin(\omega \cdot t + \phi) \lor \omega = \sqrt{\frac{k}{m}}$$

for translatory vibrations

Damped Oscillations

- Real systems have damping for instance through friction.
- Since friction is a dissipative force the amplitude of oscillations must decrease with time.
- The frictional force is often caused by the medium in which the oscillating body is immersed.

• • Example: Gas damper

Mass-spring-damper system

• • Damped oscillations $F_{R=} = -b \cdot v = -b \cdot \frac{dx}{dt}$

$$F_{R=} = -b \cdot v = -b \cdot \frac{dx}{dt}$$

b =damping constant

Newton's second law:

$$\sum F_{x} = m \cdot a_{x}$$

$$-k \cdot x - b \cdot \frac{dx}{dt} = m \cdot \frac{d^2x}{dt^2}$$

$$m \cdot \frac{d^2x}{dt^2} + b \cdot \frac{dx}{dt} + k \cdot x = 0$$

• • Complex numbers

Solution using complex variables

Suppose the solution is of the form:

$$x(t) = A \cdot e^{(s \cdot t)}$$

$$v(t) = s \cdot A \cdot e^{(s \cdot t)}$$

$$v(t) = s \cdot A \cdot e^{(s \cdot t)}$$
$$a(t) = s^{2} \cdot A \cdot e^{(s \cdot t)}$$

$$m \cdot \frac{d^2x}{dt^2} + b \cdot \frac{dx}{dt} + k \cdot x = 0$$

$$(s^2 \cdot m + s \cdot b + k) A \cdot e^{(s \cdot t)} = 0$$

This image cannot currently be displayed.
$$s^2 + s \cdot \frac{b}{m} + \frac{k}{m} = 0$$

$$\omega_0 = \sqrt{\frac{k}{m}}$$

$$\gamma = \frac{b}{2m}$$

 $s^2 + 2 \cdot \gamma \cdot s + \omega_0^2 = 0$ Quadratieq.

$$S_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-2 \cdot \gamma \pm \sqrt{4\gamma^2 - 4\omega_0^2}}{2} = \frac$$

• • 3 cases

Underdamped: $\gamma < 1$

$$\omega_0 = \sqrt{\frac{k}{m}} > \gamma = \frac{b}{2m}$$

$$x(t) = A \cdot e^{-\gamma t} \cos(\omega' t + \phi)$$

$$\omega' = \sqrt{\omega_0^2 - \gamma^2}$$

$$\zeta = \frac{b}{2\sqrt{k \cdot m}}$$

Critically damped

$$\gamma = 1$$

$$x(t) = e^{-\gamma \cdot t} \left(A_1 \cdot t + A_2 \right)$$

• • • Overdamped $x(t) = Ae^{-\gamma_1 t} + A_2 e^{-\gamma_2 t}$

$$x(t) = Ae^{-\gamma_1 t} + A_2 e^{-\gamma_2 t}$$

$$-\gamma_{1,2} = \frac{b \pm (b^2 - 4km)^{1/2}}{2m}$$

Forced Oscillations and Resonance

• • Fourier series

 Each periodic function (piecewise smooth, continuous and periodic) can be rewritten as:

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left[a_n \cdot \cos(\omega_n \cdot t) + b_n \cdot \sin(\omega_n \cdot t) \right]$$

$$\omega_n = n \cdot \frac{2\pi}{T}$$

$$a_n = \frac{2}{T} \int_{t_1}^{t_2} f(t) \cdot \cos(\omega_n \cdot t) dt$$

$$b_n = \frac{2}{T} \int_{t_1}^{t_2} f(t) \cdot \sin(\omega_n \cdot t) dt$$

• • Example sawtooth

harmonics: 1

• • Thus

- When one knows how a system reacts to sine and cosine functions one knows how a system reacts to any periodic function!
- Remark: A cosine function is a sine function with a phase difference of $\pi/2$

• • Fourier Transforms

- Mathematical software packages implement Fourier Transforms
 - Discrete Fourier Transform (DFT)
 - Fast Fourier Transform (FFT)
 - Matlab:
 - Help search Fourier
 - Mathematica
 - http://demonstrations.wolfram.com/ExamplesOfFourierSeries/

Mass-spring-damper system

• • Equation forced vibration

$$\sum F_{x} = m \cdot a_{x}$$

$$F(t) = F_{excitation} \cdot \cos(\omega_{excitation} \cdot t)$$

$$-k \cdot x - b \cdot \frac{dx}{dt} + F_{excitation} \cdot \cos(\omega_{excitation} \cdot t) = m \cdot \frac{d^{2}x}{dt^{2}}$$

$$m \cdot \frac{d^{2}x}{dt^{2}} + b \cdot \frac{dx}{dt} + k \cdot x = F_{excitation} \cdot \cos(\omega_{excitation} \cdot t)$$

• • • Solution
$$x(t) = X \cdot \cos(\omega_{excitation} \cdot t - \phi)$$

$$\zeta = \frac{b}{2\sqrt{k \cdot m}}$$

$$X = \frac{F_{excitation}}{k} \frac{1}{\sqrt{(1 - r^2)^2 + (2 \cdot \zeta \cdot r)^2}}$$

$$r = \frac{\omega_{excitation}}{\omega_{eigen}} = \frac{f_{excitation}}{f_{eigen}}$$

$$\phi = \arctan\left(\frac{2 \cdot \zeta \cdot r}{1 - r^2}\right)$$

Forced response massspring damper system

Frequence response function of a mass spring damper system

• • Input – FRF - Output

Do not forget the phase change! Freq. dependent

Simulink Mass-Spring-Damper Example

Simulink example: MassaVeerDemperStep

• • Equivalent systems

Translational mechanics	Series RLC
Position x	Current i
Mass m	Inductance L
Spring k	Elastance 1/C
Damper b	Resistance R
Drive Force F(t)	di/dt

Series RLC:

$$f = \frac{1}{2\pi} \sqrt{\frac{1}{L \cdot C}}$$

$$L \cdot \ddot{i} + R \cdot \dot{i} + i/C = \ddot{e}$$

Translational mechanics:

$$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$
$$m \cdot \ddot{x} + b \cdot \dot{x} + k \cdot x = F(t)$$

• • Realistic systems:

- Sum of N second order systems, N≥ 0
- Sum of M first order systems, M ≥ 0
- Sum of P zero order systems, P ≥ 0

The typical system responses, in the time domain, to an input step in the time domain.

SUMMARIES

1th order system response to step in time

2nd order system response to block function in time

