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Zero order systems

¢ Examples:
l Resistor (ideal): V(t)= R*I(t)
l Spring (ideal): F(t)= k*x(t)
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First order systems

¢ Examples (energy storing):
l Temperature sensor put in a heated bath
l Room heating
l (Dis)charging battery
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Temperature sensor put in a 
cooled bath
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17.3 Gas Thermometers and the Kelvin Scale     549

of a particular material. To establish a truly material-independent scale, we first 
need to develop some principles of thermodynamics. We’ll return to this fun-
damental problem in Chapter 20. Here we’ll discuss a thermometer that comes 
close to the ideal, the constant-volume gas thermometer.

The principle of a constant-volume gas thermometer is that the pressure of a 
gas at constant volume increases with temperature. We place a quantity of gas in 
a constant-volume container (Fig. 17.5a) and measure its pressure by one of the 
devices described in Section 12.2. To calibrate this thermometer, we measure the 
pressure at two temperatures, say 0°C and 100°C, plot these points on a graph, 
and draw a straight line between them. Then we can read from the graph the 
temperature corresponding to any other pressure. Figure 17.5b shows the results 
of three such experiments, each using a different type and quantity of gas.

By extrapolating this graph, we see that there is a hypothetical temperature, 
-273.15°C, at which the absolute pressure of the gas would become zero. This 
temperature turns out to be the same for many different gases (at least in the limit 
of very low gas density). We can’t actually observe this zero-pressure condition. 
Gases liquefy and solidify at very low temperatures, and the proportionality of 
pressure to temperature no longer holds.

We use this extrapolated zero-pressure temperature as the basis for a tempera-
ture scale with its zero at this temperature. This is the Kelvin temperature scale, 
named for the British physicist Lord Kelvin (1824–1907). The units are the same 
size as those on the Celsius scale, but the zero is shifted so that 0 K = -273.15°C 
and 273.15 K = 0°C (Fig. 17.5b); that is,

(17.3)Kelvin
temperature

Celsius
temperature

TK =  TC +  273.15

A common room temperature, 20°C 1=  68°F2, is 20 + 273.15, or about 293 K.

CAUTION  Never say “degrees kelvin” In SI nomenclature, the temperature mentioned 
above is read “293 kelvins,” not “degrees kelvin” (Fig. 17.6). We capitalize Kelvin when 
it refers to the temperature scale; however, the unit of temperature is the kelvin, which is 
not capitalized (but is nonetheless abbreviated as a capital K). ❙

17.5 (a) Using a constant-volume gas thermometer to measure temperature. (b) The 
greater the amount of gas in the thermometer, the higher the graph of pressure p versus 
temperature T.

The extrapolated plots all reach zero pressure
at the same temperature: -273.15°C.

Dashed lines show the plots
extrapolated to zero
pressure.

Plots of pressure as a function of
temperature for gas thermometers
containing different types and
quantities of gas
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(b) Graphs of pressure versus temperature at constant volume
for three different types and quantities of gas

(a) A constant-volume gas
thermometer

DATA SPEAKS
Temperature Scales
When students were given a problem 
about converting among the Celsius, 
Fahrenheit, and Kelvin temperature scales, 
more than 46% gave an incorrect response. 
Common errors:

● Forgetting that Eqs. (17.1) and (17.2) 
apply to temperatures, not temperature 
differences. To convert a temperature dif-
ference in F° to one in C°, multiply by 59 ; 
to convert a temperature difference in C° 
to one in F°, multiply by 95 .

● Forgetting that temperature differences 
are the same on the Celsius and Kelvin 
scales. Increasing the temperature by  
5 C° is the same as increasing it by 5 K.

17.6 Correct and incorrect uses of the 
Kelvin scale.

WRONG

RIGHT!

Kelvin temperatures are
measured in kelvins ...

... not “degrees” kelvin.

Ice and
water

0.00°C

T =  273.15 K

T =  273.15 °K
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Solution 
(for the step response)
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Example: room temperature in Simulink



Step response 
first order system



Response to sine input
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Second order systems

factor dampings 
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Tacoma Narrows bridge



Free vibrations, 
unforced



Simple Harmonic Motion
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Equations of 
Simple Harmonic Motion
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Parameters of 
Simple Harmonic Motion

rad/sin  
m
k

=w

( )fw +××= tAtx sin)(

Angular frequency:

Phase: radin  fw +× t

AAmplitude:

Period time:
f

T 12
==

w
p

Time required for one complete oscillation.

Frequency:
p
w
2

=f



Solution graphically
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Circular Motion and 
Simple Harmonic Motion
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Grandfather clock

¢ The oscillations of 
the pendulum was 
used to keep time



A Simple Pendulum,

2
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(Taylor expansion) sin q = q
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Damped Oscillations

¢ Real systems have damping for 
instance through friction.

¢ Since friction is a dissipative force the 
amplitude of oscillations must 
decrease with time.

¢ The frictional force is often caused by 
the medium in which the oscillating 
body is immersed.



Example: Gas damper



Mass-spring-damper system



Damped oscillations
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Complex numbers



Solution using complex 
variables

( ) ( )

( )

( )ts

ts

ts

eAsta
eAstv

eAtx

×

×

×

××=

××=

×=

2)(
)(

:form  theof issolution   theSuppose



This image cannot currently be displayed.





3 cases
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Critically damped
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Overdamped

A1+A2



Forced Oscillations 
and Resonance



Fourier series

¢ Each periodic function (piecewise smooth, 
continuous and periodic) can be rewritten as:
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Example sawtooth





Thus

¢ When one knows how a system 
reacts to sine and cosine functions 
one knows how a system reacts to 
any periodic function!

¢ Remark: A cosine function is a sine 
function with a phase difference of p/2



Fourier Transforms

¢ Mathematical software packages implement 
Fourier Transforms
l Discrete Fourier Transform (DFT)
l Fast Fourier Transform (FFT)

l Matlab: 
• Help search Fourier

l Mathematica
• http://demonstrations.wolfram.com/ExamplesOfFo

urierSeries/



Mass-spring-damper system



Equation forced vibration
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Forced response mass-
spring damper system



Frequence response function of 
a mass spring damper system

Logarithmic scales!



Input – FRF - Output

Do not forget the phase change! Freq. dependent



Simulink Mass-Spring-
Damper Example

Simulink example: MassaVeerDemperStep



Equivalent systems

Translational 
mechanics

Series RLC

Position x Current i
Mass m Inductance L

Spring k Elastance 
1/C

Damper b Resistance R

Drive Force 
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Series RLC:

Translational mechanics:



Realistic systems:

¢ Sum of N second order systems, N≥ 0
¢ Sum of M first order systems, M ≥ 0
¢ Sum of P zero order systems, P ≥ 0



SUMMARIES

The typical system responses, in the time domain, to an input step 
in the time domain.



1th order system response 
to step in time

T (t) = Tend � (Tend � Tbegin) · e
�t
⌧



2nd order system response 
to block function in time


