Finite Element Modelling Theory and application

Dr. ir. F.L.M. Delbressine

Literature

- Rao S.S., The Finite Element Method in Engineering, Elsevier, 2005.
- Zienkiewicz O.C, The Finite Element Method, McGraw-Hill, London, 1989.
- Przemieniecki J.S., Theory of Matrix Structural Analysis, McGraw-Hill, New York, 1968.

Basic idea behind FEM

 Find the solution of a complicated problem by replacing it by a simpler one

- Since the actual problem is replaced by a simpler one we will be able to find only an approximate solution!
- The existing mathematical models will not be sufficient to find the exact solution of most practical problems.

Finite Elements?

- The solution region is considered as built up of many small interconnected subregions called finite elements.
- In each element a convenient approximate solution is assumed and the conditions of overall equilibrium are derived.
- It will often be possible to improve or refine the approximate solution by spending more computational effort.

An approximation example

General applicability of the theory

General description of the method

- 1. Discretization of the structure
- 2. Selection of a proper interpolation or displacement model
- 3. Derivation of element stiffness matrices and load vectors
- 4. Assemblage of element equations to obtain the overall equilibrium equations
- 5. Solution for the unknown nodal displacements
- 6. Computation of element strains and stresses

Example

stress analysis of a stepped bar

Discretization of the structure

Selection of a proper interpolation or displacement model

$$\phi(x) = \Phi_1^{(e)} + \left(\Phi_2^{(e)} - \Phi_1^{(e)}\right) \cdot \frac{x}{l^{(e)}}$$

$$\Phi_1^{(e)} = \phi(0) \Rightarrow a = \Phi_1^{(e)}$$

$$\Phi_2^{(e)} = \phi(l^{(e)}) \Rightarrow b = (\Phi_2^{(e)} - \Phi_1^{(e)})/l^{(e)}$$

$$\phi(x) = \Phi_1^{(e)} + \left(\Phi_2^{(e)} - \Phi_1^{(e)}\right) \cdot \frac{x}{l^{(e)}}$$

Derivation of element stiffness matrices and load vectors

 Can be derived from the principle of minimum potential energy:

I=strain energy –work done by external forces

$$I = \pi^{(1)} + \pi^{(2)} - W_p$$

$$\pi^{(e)} = A^{(e)} \cdot \int_0^{l^{(e)}} \frac{1}{2} \sigma^{(e)} \cdot \epsilon^{(e)} \cdot dx$$

$$\pi^{(e)} = \frac{A^{(e)} \cdot E^{(e)}}{2} \int_0^{l^{(e)}} \epsilon^{(e)^2} dx$$

$$\epsilon^{(e)} = \frac{\partial \phi}{\partial x}$$

$$\epsilon^{(e)} = \frac{\partial \left(\Phi_1^{(e)} + \left(\Phi_2^{(e)} - \Phi_1^{(e)}\right) \cdot \frac{x}{l^{(e)}}\right)}{\partial x}$$

$$\epsilon^{(e)} = \frac{\left(\Phi_2^{(e)} - \Phi_1^{(e)}\right)}{l^{(e)}}$$

$$\pi^{(e)} = A^{(e)} \int_0^{l^{(e)}} \frac{1}{2} \sigma^{(e)} \cdot \epsilon^{(e)} \cdot dx$$

$$\sigma^{(e)} = E^{(e)} \cdot \epsilon^{(e)}$$

$$\pi^{(e)} = \frac{A^{(e)} \cdot E^{(e)}}{2} \int_0^{l^{(e)}} \epsilon^{(e)^2} \cdot dx$$

$$\pi^{(e)} = \frac{A^{(e)} \cdot E^{(e)}}{2} \int_0^{l^{(e)}} \left(\frac{\Phi_2^{(e)} - \Phi_1^{(e)}}{l^{(e)}}\right)^2 dx$$

$$\pi^{(e)} = \frac{A^{(e)} \cdot E^{(e)}}{2} \left(\Phi_2^{(e)} - \Phi_1^{(e)}\right)^2$$

$$\pi^{(e)} = \frac{A^{(e)} \cdot E^{(e)}}{2} \left(\Phi_2^{(e)} - \Phi_1^{(e)}\right)^2$$

$$\pi^{(e)} = \vec{\Phi}^{(e)} \cdot K^{(e)} \cdot \vec{\Phi}^{(e)}$$

$$K^{(e)} = \frac{A^{(e)} \cdot E^{(e)}}{l^{(e)}} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

$$W_p = \Phi_1 P_1 + \Phi_2 P_2 + \Phi_3 P_3 = \tilde{\Phi}^T \cdot \tilde{P}_C$$

$$\frac{\partial I}{\partial \Phi_i} = 0, i = 1, 2, 3$$

$$\frac{\partial I}{\partial \Phi_i} = \frac{\partial}{\partial \Phi_i} \left(\sum_{e=1}^2 \pi^{(e)} - W_p \right) = 0$$

$$\sum_{e=1}^{2} \left([K^{(e)}] \cdot \vec{\Phi}^{(e)} - \vec{P}^{(e)} \right) = 0$$

$$[\tilde{K}] \cdot \tilde{\Phi} - \tilde{P} = \vec{0} \implies [\tilde{K}] \cdot \tilde{\Phi} = \tilde{P}$$

$$\Rightarrow \tilde{\Phi} = [\tilde{K}]^{-1} \cdot \tilde{P}$$

$$[\tilde{K}] = \sum_{e=1}^{2} [K^{(e)}]$$

$$\vec{\tilde{\Phi}} = \begin{pmatrix} \Phi_1 \\ \Phi_2 \\ \Phi_3 \end{pmatrix}; \vec{\tilde{P}} = \begin{pmatrix} P_1 \\ P_2 \\ P_3 \end{pmatrix}$$

How to obtain the displacements given the loads and stifness matrix?

$$[\tilde{K}] = \begin{bmatrix} \frac{A^{(1)} \cdot E^{(1)}}{l^{(1)}} & -\frac{A^{(1)} \cdot E^{(1)}}{l^{(1)}} & 0 \\ -\frac{A^{(1)} \cdot E^{(1)}}{l^{(1)}} & \frac{A^{(1)} \cdot E^{(1)}}{l^{(1)}} + \frac{A^{(2)} \cdot E^{(2)}}{l^{(2)}} & -\frac{A^{(2)} \cdot E^{(2)}}{l^{(2)}} \\ 0 & -\frac{A^{(2)} \cdot E^{(2)}}{l^{(2)}} & \frac{A^{(2)} \cdot E^{(2)}}{l^{(2)}} \end{bmatrix}$$

$$\vec{\tilde{\Phi}} = [\tilde{K}]^{-1} \cdot \vec{\tilde{P}}$$

Computation of the element strains and stresses

$$\epsilon^{(1)} = \frac{\partial \phi}{\partial x} = \frac{\Phi_2^{(1)} - \Phi_1^{(1)}}{l^{(1)}} = \frac{\Phi_2 - \Phi_1}{l^{(1)}}$$

$$\epsilon^{(2)} = \frac{\partial \phi}{\partial x} = \frac{\Phi_2^{(2)} - \Phi_1^{(2)}}{l^{(2)}} = \frac{\Phi_3 - \Phi_2}{l^{(2)}}$$

$$\sigma^{(1)} = E^{(1)} \cdot \epsilon^{(1)} = E^{(1)} \frac{\Phi_2 - \Phi_1}{l^{(1)}}$$

$$\sigma^{(2)} = E^{(2)} \cdot \epsilon^{(2)} = E^{(2)} \frac{\Phi_3 - \Phi_2}{l^{(2)}}$$

The same example with numbers

$$A^{(1)} = 0.0002m^{2}$$

$$A^{(2)} = 0.0001m^{2}$$

$$l^{(1)} = l^{(2)} = 0.1m$$

$$E^{(1)} = E^{(2)} = 2 \cdot 10^{11} \frac{N}{m^{2}}$$

$$P_{3} = 10^{4}N; P_{2} = 0N; \Phi_{1} = 0m$$

$$P_{1} = ?; \Phi_{2} = ?; \Phi_{3} = ?$$

$$[\tilde{K}] = \begin{bmatrix} \frac{A^{(1)} \cdot E^{(1)}}{l^{(1)}} & -\frac{A^{(1)} \cdot E^{(1)}}{l^{(1)}} & 0 \\ -\frac{A^{(1)} \cdot E^{(1)}}{l^{(1)}} & \frac{A^{(1)} \cdot E^{(1)}}{l^{(1)}} + \frac{A^{(2)} \cdot E^{(2)}}{l^{(2)}} & -\frac{A^{(2)} \cdot E^{(2)}}{l^{(2)}} \\ 0 & -\frac{A^{(2)} \cdot E^{(2)}}{l^{(2)}} & \frac{A^{(2)} \cdot E^{(2)}}{l^{(2)}} \end{bmatrix}$$

$$\begin{bmatrix} 4 \cdot 10^8 & -4 \cdot 10^8 & 0 \\ -4 \cdot 10^8 & 6 \cdot 10^8 & -2 \cdot 10^8 \\ 0 & -2 \cdot 10^8 & 2 \cdot 10^8 \end{bmatrix} \cdot \begin{pmatrix} 0 \\ \Phi_2 \\ \Phi_3 \end{pmatrix} = \begin{pmatrix} P_1 \\ 0 \\ 10^4 \end{pmatrix}$$

Results:

$$\Phi_2 = 0.25 \cdot 10^{-4} m$$

$$\Phi_3 = 0.75 \cdot 10^{-4} m$$

$$P_1 = -1 * 10^4 N$$

Element stresses and strains:

$$\epsilon^{(1)} = \frac{\Phi_2 - \Phi_1}{l^{(1)}} = 2.5 \cdot 10^{-4}$$

$$\epsilon^{(2)} = \frac{\Phi_3 - \Phi_2}{l^{(2)}} = 5 \cdot 10^{-4}$$

$$\sigma^{(1)} = E^{(1)} \cdot \epsilon^{(1)} = 5 \cdot 10^7 \frac{N}{m^2}$$

$$\sigma^{(2)} = E^{(2)} \cdot \epsilon^{(2)} = 1 \cdot 10^8 \frac{N}{m^2}$$

Example, Threechair, oak

Equivalent stress

Deformation

Safety factor

