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Basic idea behind FEM

*Find the solution of a complicated
problem by replacing it by a simpler one

* Since the actual problem is replaced by a simpler one we will be able
to find only an approximate solution!

* The existing mathematical models will not be sufficient to find the
exact solution of most practical problems.



Finite Elements?

* The solution region is considered as built up of many small
interconnected subregions called finite elements.

* In each element a convenient approximate solution is assumed and
the conditions of overall equilibrium are derived.

* It will often be possible to improve or refine the approximate
solution by spending more computational effort.



An approximation example
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General applicability of the theory



General description of the method

Discretization of the structure
Selection of a proper interpolation or displacement model
Derivation of element stiffness matrices and load vectors
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Assemblage of element equations to obtain the overall
equilibrium equations

Solution for the unknown nodal displacements
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Computation of element strains and stresses



Example

stress analysis of a stepped bar



Discretization of the structure
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Selection of a proper interpolation or
displacement model
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Derivation of element stiffness matrices
and load vectors

* Can be derived from the principle of minimum
potential energy:
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How to obtain the displacements given the loads

and stifness matrix?




Computation of the element
strains and stresses
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The same example with numbers
AN = 0.0002m>
A®) = 0.0001m>

(D =13 = 0.1m
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Results:

d, = 0.25-10"*m
$; = 0.75-10"*m
P, = —1%10*N



Element stresses and strains:
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Example, Threechair, oak




Equivalent stress




Deformation




Safety factor




