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3.2 There Are Seven Types of Frieze Patterns

Figure 3.6 gives an example of a frieze pattern. This figure has the charac-
teristic property that it is not invariant under arbitrary translations but only
under powers of a “base translation” T . Let us rephrase this as a mathemat-

T
Fig. 3.6. A frieze pattern

ical definition. For a translation T and a positive integer k, we let T k denote
the k-fold composition of T :

T k = T ◦ T ◦ · · · ◦ T︸ ︷︷ ︸
k times

.

Moreover, by convention: T 0 = id and T −k =
(
T −1

)k for k > 0.

Definition 3.9. A frieze pattern D is a subset of the plane for which the set
of translations in the symmetry group I(D) is equal to {T k : k ∈ Z } for some
translation T . We say that T generates the frieze pattern.

If T generates the frieze pattern D, then so does T −1. A natural question
is, how many different frieze patterns are there? From a practical point of
view the answer is infinitely many. We can always slightly change the motif in
a frieze pattern; Escher applied this principle often. If we want to answer the
question from a mathematical point of view, we must first determine when
two patterns are equivalent.

Definition 3.10. We say that the frieze patterns D1 and D2 have the same
type if there is an isomorphism ϕ from I(D1) to I(D2) that maps I(D1)+

onto I(D2)+. We will say that two frieze patterns are essentially different if
they do not have the same type.

For example, the frieze patterns in Fig. 3.7 have the same type. For every
pattern D in the figure, there is a translation T such that every translation
that maps D onto itself is equal to T k for some k ∈ Z, while every translation
T k, k ∈ Z, maps D onto itself. We have

I(D) = I(D)+ = { T k : k ∈ Z } .

This group is isomorphic to Z; to obtain an isomorphism we map T k to k,
for k ∈ Z. The mathematical question is now, how many essentially different
frieze patterns are there? We will show that there are seven essentially different
frieze patterns.
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Fig. 3.7. Frieze patterns of the same type

We first list the different types of frieze patterns that have only direct
isometries—either translations or rotations. The translations are all of the
form T k, k ∈ Z, where T is a translation that generates the frieze pattern. If
a frieze pattern has rotational symmetry, this can only be twofold rotational
symmetry.

Theorem 3.11. Every rotation other than the identity in the symmetry group
of a frieze pattern is of order 2.

Proof. Let T be a translation that generates the frieze pattern. Let R be
a rotation in the symmetry group, with center C. Consider the map F =
R◦T ◦R−1. It follows from Sect. 2.4, Exercise 2.33 and Theorem 2.34 that F
is a translation. We have

F(C) = R ◦ T ◦ R−1(C) = R ◦ T (C) .

Since F ∈ I(D) and F is a translation, F = T k for some k, so

R ◦ T (C) = F(C) = T k(C) . (3.1)

Since R is a rotation with center C, we obtain

d
(
C, T k(C)

)
= d (C,R ◦ T (C)) = d (C, T (C)) .

Consequently, k = 1 or k = −1. The first case, k = 1, does not occur. Indeed,
(3.1) implies that in this case, T (C) is the rotation center of R, whence
T (C) = C. This is impossible because a nontrivial translation has no fixed
points. In the second case the rotation angle of R equals π, and R is of order 2.

We have found two types of frieze patterns, drawn on the left in Fig. 3.8.
These can be seen as a succession of tiles. These tiles may be infinitely “high,”
but for practical reasons we will draw them with finite height. Together, the
images of a single tile under the translations T n cover the pattern, where
the tiles have only boundary points in common. In the patterns on the left
such a tile has been drawn. On the right the tile has been drawn again, now
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type 1

type 2

Fig. 3.8. Frieze patterns without indirect isometries

without motif. Instead, we have indicated the symmetry elements. The length
of a tile, measured in the direction of the translation vector of the generating
translation T , is equal to the length of that vector.

A pattern of type 1 allows only translations. In the rest of this section we
will denote the symmetry group of the frieze pattern of type 1 by H1, and that
of type 2 by H2. The symmetry groups of frieze patterns are also called frieze
groups . A pattern of type 2 allows both translations and rotations over π.
The translations are of the form T k with k ∈ Z, where T is a generating
translation. Note that I(D) being a group implies that as soon as there is one
rotation R over an angle π that maps a frieze pattern D into itself, there are
also other rotations with this property.

Let us examine this further. We find the rotations as follows; see Fig. 3.9.
We write the rotation R, with center C, as a product Sl2 ◦Sl1 of two reflections

T k(C) T −k(C)C l2

l1 l3

Fig. 3.9. R = Sl2 ◦ Sl1 , T k = Sl1 ◦ Sl3 , R ◦ T k = Sl2 ◦ Sl3

with perpendicular axes l1 and l2, where l2 is parallel to the span of T , say
R = Sl2 ◦ Sl1 . Next we write the translation T k, k �= 0, as a product of
two reflections with parallel axes l1 and l3 that are perpendicular to the span
of T , say T k = Sl1 ◦Sl3 ; first Sl3 , then Sl1 . The product R◦T k is the rotation
Sl2 ◦ Sl3 with center the midpoint of the line segment [CT −k(C)]. From this
we can easily deduce the rotation centers, indicated in Fig. 3.8 by small lenses.
For later use we note that in the same way, using Exercise 2.31 it follows that

R ◦ T = T −1 ◦ R and R ◦ T −1 = T ◦ R . (3.2)
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Theorem 3.12. Consider a frieze pattern D with generating translation T
with translation vector t. If R1 and R2 are rotations in I(D) with dis-
tinct centers C1 and C2, respectively, there is a natural number k such that
d(C1, C2) = (k/2)‖t‖.

Proof. The map R1◦R2 is a translation; the length of the translation vector is
equal to 2d(C1, C2). This latter must be an integral multiple of ‖t‖. Therefore
there is a natural number k such that 2d(C1, C2) = k ‖t‖.

We continue the discussion we started before the theorem. We were study-
ing which rotations can occur in the symmetry group of a pattern of type 2.
We indicated these schematically in Fig. 3.8, in the lower right corner. The
theorem we just proved implies that we have already found all rotations that
can occur. Thus we arrive at the following classification of frieze patterns with
only direct isometries.

Theorem 3.13. If the symmetry group of a frieze pattern contains only direct
isometries, it has type 1 or 2.

Proof. Let Ti, for i = 1, 2, be a generating translation of the frieze pattern
of type i. In addition to translations, the symmetry group H2 of the frieze
pattern of type 2 also contains a rotation, which we denote by R2.

Above we saw that we can write every rotation in H2 as a product R2 ◦T k
2

with k ∈ Z. Let D be a frieze pattern with generating translation T . If I(D)
does not contain any rotations, I(D) = { T k : k ∈ Z }. By associating T k

to T k
1 , for k ∈ Z, we find an isomorphism from I(D) to H1. If I(D) does

contain a rotation, say R, then in the same manner as above we find that
the elements of I(D) are of the form T k and R ◦ T k, k ∈ Z. We define an
isomorphism from I(D) to H2 as follows: for every k ∈ Z, we associate T k

to T k
2 and R ◦ T k to R2 ◦ T k

2 . This map is indeed an isomorphism; to prove
this we can use the equations in (3.2), which hold both in H2 and in I(D). For
example, the image of R2◦T −8

2 = T 5
2 ◦

(
R2 ◦ T −3

2

)
is T 5◦

(
R ◦ T −3

)
= R◦T −8.

To find the other types of frieze patterns, we will add indirect isometries
to the symmetry groups H1 and H2. This method is the converse of what is
described in Theorem 3.6. In that theorem we started out with a group of
transformations and studied the place of the direct isometries in the group.
Now we have a group H of direct isometries, where H = H1 or H = H2, and
we try to expand this group to a group G in such a way that H is exactly the
subgroup G+. For every element F in the group G we want to construct, we
have F ◦F ∈ H . This is because F ◦F is always a direct isometry, regardless
of whether F is direct. Our strategy is to repeatedly look for an indirect
isometry F such that F2 is an element of H , and add this to H .

Extensions of H1. Let us start with the symmetry group H1. We have
H1 = { T k : k ∈ Z }, where T is the generating translation of the type-1
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type 1

type 2

type 3

type 4

type 5

type 6

type 7

Fig. 3.10. The seven essentially different frieze patterns

frieze pattern. Which indirect isometries can we add to this? Since id = S2 for
every reflection S, we first study which reflections we can add to H1. The only
reflections that qualify are those whose reflection axis is either perpendicular
or parallel to the translation vector of T ; see Exercise 3.9. There can be only
one of the latter type in the symmetry group, because otherwise we could find
a composition that is a translation in a direction perpendicular to that of T ,
which is excluded by the definition of a frieze pattern.

Let us first consider the extension of H1 by a reflection with axis parallel
to the translation vector of T . This leads to the symmetry group H3 of a
type-3 frieze pattern; see Fig. 3.10. This has the following elements:

1. Translations T n, n ∈ Z (the elements of H1);
2. A reflection S whose axis is parallel to the translation vector of T ;
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3. Glide reflections, namely products of S and translations from H1.

In the figure representing the tile, on the right, the reflection S is indicated
by a continuous straight line. The symmetry group H3 of the type-3 frieze
pattern is one of the extensions of the translation group we had in mind.

We obtain a second extension of H1 by adding a reflection whose axis is
perpendicular to the translation vector of T . The products of this reflection
with the elements of H1 are reflections. Figure 3.10 shows a type-4 frieze
pattern. The symmetry group H4 of this strip is exactly the extension of H1

we just described. The representation of the tile, on the right, shows which
reflections are in H4.

There exists yet another extension of H1. For this we write the transla-
tion T as the square of a glide reflection G. The symmetry group H5 of the
type 5 frieze pattern contains G, the translations, and other glide reflections.
The square of such a glide reflection is a translation T n with n odd, and ev-
ery translation T n with n odd can be obtained in this way. It follows that we
have now found all extensions of H1. The axis of a glide reflection is commonly
indicated with a dashed line; see Fig. 3.10.

Extensions of H2. We now turn our attention to extensions of the symme-
try group H2 of the type-2 frieze pattern; see Fig. 3.8. The symmetry group H6

of the type-6 frieze pattern, Fig. 3.10, contains the elements of H2 plus other
reflections. Note that all these reflections can be obtained as product of one
fixed reflection and the point reflections or translations from H2.

The symmetry group H7 of the type-7 frieze pattern contains both the
elements of H2 and a glide reflection G whose square is equal to T . Since we
are dealing with a group, we also find reflections in the symmetry group. We
can, for example, find a reflection as shown in Fig. 3.11. The result is indicated

l2

l3l1

Fig. 3.11. R = Sl3 ◦ Sl2 , G = Sl1 ◦ Sl2 ◦ Sl3 , G ◦ R = Sl1

schematically on the tile, on the right in Fig. 3.10; the dashed line indicates
a glide reflection, the thick continuous lines indicate reflections. We have now
found all possible extensions of H2.

Theorem 3.14. Every frieze pattern has one of the types 1 through 7.
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Proof. Let D be a frieze pattern. The group I(D)+ is isomorphic to either H1

or H2. If I(D) = I(D)+, D must have type 1 or 2. If I(D) �= I(D)+, I(D)
results from I(D)+ by adding a reflection or a glide reflection. The group I(D)
therefore corresponds to one of the extensions of H1 or H2 described above.
The proof of Theorem 3.13 shows how to make an isomorphism from I(D) to
one of the symmetry groups H3 through H7.

In the following example we look back at Definition 3.10 of type. We will
show why we need to bother with the direct isometries and may not simply
say that D1 and D2 have the same type if there is an isomorphism from I(D1)
to I(D2).

Example 3.15. We consider the symmetry group H2 of the type-2 frieze pat-
tern and the symmetry group H4 of the type-4 frieze pattern. We will show
that H2 and H4 are isomorphic. Nevertheless, types 2 and 4 are different,
since H+

2 = H2 and H+
4 �= H4.

We assume that the translations in both groups are powers of the same trans-
lation T . We can choose coordinates in such a way that the centers of the
rotations in H2 are equal to (n, 0), n ∈ Z. We let Rn denote the rotation
over π with center (n, 0). Likewise, we can choose coordinates such that the
axes of the reflections in H4 have equations x1 = n. We let Sn denote the
reflection in the line x1 = n. Note that in both cases, the “width” of the
tile is equal to 2 and the norm of the translation vector is also equal to 2:
‖T (o)‖ = 2. We can easily show that Rn = T n ◦ R0 and Sn = T n ◦ S0 for
all integers n. To define the isomorphism from H2 to H4, we map T n to T n

and Rn to Sn, for all n; we can easily check that this defines an isomorphism.

Exercises

3.6. Show that the symmetry group of the type-1 and type-5 frieze patterns
are isomorphic, whereas the types are different.

3.7. The symmetry groups of the type-2, -4, and -7 frieze patterns are iso-
morphic; nevertheless, the types are different.

3.8. Try to use the group properties to show that the symmetry groups of the
type-3, -4, and -5 frieze patterns are not isomorphic.
Hint: The symmetry group of the type-5 frieze pattern contains no transfor-
mation whose square is the identity, other than the identity itself.

3.9. Let D be a frieze pattern with generating translation T . If the reflection S
is an element of the symmetry group I(D), the reflection axis of S is either
parallel or perpendicular to the translation vector of T .
Hint: Consider the map S ◦ T ◦ S.


