
Throughout a decade of remarkable artistic de-
velopment stretching from 1943 to 1952, American painter
Jackson Pollock generated a vast body of distinct artwork by
rolling large canvases across the floor of his windswept barn
and dripping household paint on them from an old can with
a wooden stick. In contrast to the broken lines painted by con-
ventional brush contact with the canvas surface, he poured a
constant stream of paint onto his horizontal canvases to pro-
duce uniquely continuous trajectories [1]. Although this tech-
nique initially polarized opinion, in the 50 years since Pollock’s
last major drip paintings were created, both art historians and
the public have come to recognize his patterns as a revolu-
tionary approach to aesthetics. However, it was not until 1999
that we, the present authors, identified the defining visual char-
acter of his patterns as fractal [2]—bearing the “fingerprint”
of Nature’s patterns [3], leading us to label Pollock’s work
“Fractal Expressionism” [4]. This discovery has triggered a
multi-disciplinary debate over the precise process that Pollock
used to generate his fractal patterns. For art theorists, the artis-
tic significance of Pollock’s fractals lies in the process of their
generation. Pollock’s method also offers an intriguing com-
parison for scientists studying fractal generation in Nature’s
systems. For psychologists, the process allows an investigation
of the fundamental capabilities and limits of human behavior.
How did a human being create such intricate patterns with
such precision 25 years ahead of their scientific discovery?
Most examples of “fractal art” are not painted by an artist but
instead are generated indirectly using computer graphics [5].
Pollock received significant media attention at his creative
peak in 1950 [6] and the resulting visual documentation of
his painting technique offers a unique opportunity to study
how fractals can be created directly by a human being. We have
analyzed film sequences that recorded the evolution of Pol-
lock’s patterns during the painting process and have identi-
fied a systematic fractal construction process in which a work’s
fractal quality emerged within the first minute, followed by a
period of up to 6 months during which Pollock added multi-
ple layers of paint, thus fine-tuning the fractal content. We in-
vestigate here the techniques Pollock employed to refine the
fractal content of his paintings over the years and interpret
these results within the context of recent visual perception
studies of fractal patterns.

FRACTAL ANALYSIS
OF THE DRIP PATTERNS
During Pollock’s peak years,
1947–1952, his drip paintings fre-
quently were described as “or-
ganic,” suggesting that the imagery
in his paintings alluded to Nature.
Lacking the cleanliness of artificial
order, his dripped paint clearly
stands in sharp contrast to the
straight lines, triangles, squares and
other “man-made” shapes known
within mathematics as Euclidean
geometry. But if Pollock’s swirls of
paint are indeed a celebration of
Nature’s organic shapes, what shapes would these be? Since
Pollock’s time, two vast areas of study have evolved to accom-
modate a greater understanding of Nature’s rules. During the
1960s, scientists began to examine the dynamics of Nature’s
processes—how natural systems, such as the weather, evolve
with time. They found that, although natural systems mas-
queraded as being disordered, lurking underneath was a re-
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Fig. 1. A schematic representation of the authors’ technique used to
detect the fractal quality of Pollock’s patterns. The surface of the
painting is covered with a computer-generated mesh of identical
squares. Then the size of the squares in the mesh is decreased
gradually. Starting from the top left picture through to the bottom
right picture, the square size is decreased, and in each case the
number of occupied boxes (indicated by gray shading) and unoccu-
pied ones can be counted. Note that the paint trajectories used in
this schematic representation are not based on any specific Pollock
painting. (© Richard Taylor)



markably subtle form of order. This dy-
namic was labeled chaotic, and an area
of study called chaos theory was intro-
duced to promote the understanding of
Nature’s dynamics [7]. Whereas chaos
describes the dynamics of a natural sys-
tem, fractal geometry describes the pat-
terns that many of these chaotic
processes leave behind [8]. Since the
1970s, many of Nature’s patterns have
been shown to be fractal [9]. Examples
include coastlines, clouds, flames, light-
ning, trees and mountain profiles. Frac-
tals look nothing like the traditional
mathematical patterns, such as triangles
and squares, that humanity has clung to
with familiarity and affection. In contrast
to the smoothness of these artificial
shapes, fractals consist of patterns that
recur upon finer and finer magnifica-
tion, building up shapes of immense
complexity.

Nature’s fractals exhibit statistical self-
similarity—the patterns observed at dif-
ferent magnifications, although not
identical, can be described by the same
statistics. We used a traditional method
for detecting statistical self-similarity on
actual Pollock paintings. Figure 1 uses a
schematic representation of a Pollock
painting in order to present a simple
demonstration of the method. The tech-
nique involved covering a digitized image
(for example, a scanned photograph) of
the painting with a computer-generated
mesh of identical squares and then cal-
culating the statistical qualities of the pat-
tern by analyzing which squares were
occupied by the painted pattern (shaded
gray in Fig. 1) and which were empty. Re-
ducing the square size is equivalent to
looking at the pattern at a finer magnifi-
cation. Thus, in this way, we can compare
the pattern’s statistical qualities at differ-
ent magnifications. When applied to Pol-
lock’s paintings, the analysis permits
examination of pattern sizes ranging
from the smallest speck of paint (0.8 mm)
up to several meters (his drip paintings
were typically between 1 and 5 m long);
we find Pollock’s patterns to be fractal
over the entire size range—the largest ob-
served fractal pattern is over 1,000 times
larger than the smallest pattern [10]. This
immense size range is significantly larger
than for observations of fractals in other
typical physical systems [11]. A conse-
quence of observing the fractal patterns
over such a large size range is that pa-
rameters that characterize the fractal
statistics can be determined with great
accuracy. A crucial parameter in char-
acterizing a fractal pattern is the fractal

dimension, D, and this quantifies the scal-
ing relationship between the patterns ob-
served at different magnifications [12].
For Euclidean shapes, dimension is a sim-
ple concept that is described by the fa-
miliar integer values; for a smooth line
(containing no fractal structure) D has a
value of 1, while for a completely filled
area its value is 2. However, for a fractal
pattern, the repeating structure causes
the line to begin to occupy area. D then
lies in the range between 1 and 2 and, as
the complexity and richness of the re-
peating structure increases, its value
moves closer to 2. Using the computer-

generated mesh shown in Fig. 1, we can
obtain D by calculating the number of oc-
cupied squares in the mesh, N(L), as a
function of the size, L, of the squares. For
a fractal pattern, N(L) scales according to
the power law relationship N(L) ~ L�D,
where D has a fractional value lying be-
tween 1 and 2 [13]. To detect a fractal pat-
tern, we therefore construct a “scaling
plot” of �log N(L) against log L. For a
fractal pattern, the data of this scaling plot
will lie on a straight line. In contrast, if
the pattern is not fractal, then the data
will fail to lie on a straight line. Further-
more, for a fractal pattern the value of D
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Fig. 2(a–d). A 69-�-69-cm section of a Pollock drip painting is shown at four different times
during the painting’s evolution. The values of T for the four images are: (a), 5 sec; (b), 20 sec;
(c), 27 sec; and (d), 47 sec into Pollock’s painting process. The painting process was filmed
by P. Falkenberg and H. Namuth in 1950 (© Museum of Modern Art, New York, and H. Na-
muth). The completed painting, which measured 121.9 � 182.9 cm, no longer exists [22].
(e–h) The graphs shown are the corresponding plots of �log10N(L) versus log10L for the
patterns shown in (a–d) [23]. (i–l) Pattern density plots corresponding to the paintings
shown in (a–d). Each plot consists of the local pattern density P versus the x and y positions
across the painting. (© Richard Taylor)



can be extracted from the gradient of the
straight line. In this way, we can use the
scaling plot both to detect and to quan-
tify the fractal behavior.

This fractal analysis technique is
demonstrated in Fig. 2 for an untitled
drip painting created during Pollock’s
“classic” period of 1950. During this pe-
riod, Pollock was filmed while painting,
and Figs 2(a–d) are processed images
taken from one such film that show the
drip painting at different times during its
evolution [14]. First we will concentrate
on the painted image shown in Fig. 2(d)
and the equivalent scaling plot shown in
Fig. 2(h). The region of the painting
recorded by the film process was 690 by
690 mm, and the computer covered this
region with a mesh of identical squares.
The size of the largest square was chosen
to match this area (i.e. L � 690 mm, cor-
responding to 1 square within the mesh),
and the smallest is chosen to match the
finest paintwork that can be resolved (L
� 3 mm, corresponding to 52,900
squares). The validity of the counting
technique increases in the small L limit
where the number of squares is large
enough to provide reliable counting sta-
tistics. For L values ranging from 3 to 32
mm (corresponding to log L ranging
from 0.47 to 1.5 in Fig. 2), the graph dis-
plays the straight line expected for frac-
tal behavior, and we calculate D � 1.89
from the gradient. However, for L values
ranging from 32 to 690 mm (correspon-
ding to log L ranging from 1.5 to 2.83 in
Fig. 2), the number of squares in the
mesh is sufficiently limited that the tech-
nique cannot differentiate between a spa-
tially dense fractal pattern and a filled 2D
plane. Consequently, we obtain D � 2
from the gradient for these large L val-
ues. This resolution limit (the maximum
value of L at which the fractional D value
can be resolved) is labeled LR in Fig. 2(h).
The way to enlarge the range of L over
which the fractal pattern is observed is to
increase LR by expanding the area of the
painting covered by the mesh. This in-
creases the number of squares in the
mesh for any given L and thus improves
the counting statistics. However, this is
not possible for the processed image in
Fig. 2(d), because the filming process was
restricted to the 690-mm section shown.
Nevertheless, the characteristic observed
over the L range of 3 to 32 mm is suffi-
cient to detect the fractal scaling rela-
tionship (i.e. the straight line in the
scaling plot) and is consistent with the
fractal pattern observed in the larger
paintings analyzed up to L values greater

than 1 m (for example, the painting Au-
tumn Rhythm: Number 30, 1950, discussed
below, which is 5.26 m long).

The image shown in Fig. 2(d) was
filmed 47 seconds into Pollock’s painting
process and, at this early stage of the
painting’s evolution, features only a black
layer of enamel paint. This initial layer of
paint forms the foundation of the paint-
ing and is labeled the “anchor” layer. To
complete a painting, Pollock then would
spend a period that varied from 2 days
up to 6 months building multiple layers
of colored trajectory patterns. In many
paintings, though not all, he introduced
the different colors more or less sequen-
tially: the majority of trajectories with the
same color were deposited during the
same period in the painting’s evolution.
To investigate how Pollock built his frac-
tal patterns, we have electronically de-
constructed the paintings into their
constituent colored layers and examined
the fractal content of each layer. We find
that each individual layer consists of a
uniform fractal pattern. The initial an-
chor layer in a Pollock painting deter-
mines the fractal character of the overall
painting. As subsequent layers are added
to this painting, the D value rises only
slightly. For example, consider Autumn
Rhythm: Number 30, 1950, which was
painted during the same year as the
painting shown in Fig. 2. The painting’s
D value rises from 1.66 (for just the black
anchor layer) to 1.67 (for the complete
painting with all four fractal layers of
paint—black, brown, white and gray). In
this sense, the subsequent layers merely
fine-tune the D value established by the
anchor layer. The anchor layer also visu-
ally dominates the painting. Pollock
often chose an anchor layer of black,
which contrasts with the light canvas
background. Furthermore, the anchor
layer occupies a larger surface area than
any of the other layers. For Autumn
Rhythm: Number 30, 1950, the anchor
layer occupies 32% of the canvas space,
while the combination of the other lay-
ers—brown, gray and white—occupies
only 13%.

Since the fractal content and visual
character of a Pollock painting are de-
termined predominantly by the anchor
layer, we have examined the evolution of
this layer in detail. In the anchor layer’s
initial stage, the trajectories are grouped
into small, unconnected “islands,” each
of which is localized to a specific region
of the canvas. Pollock then went on to
paint longer trajectories, extending
across several meters. These extended

trajectories joined the islands, gradually
submerging them in a dense pattern of
trajectories that became increasingly frac-
tal in character. The visual evolution of
this process is documented in Fig. 2(a–d),
and the accompanying graphs of Fig.
2(e–h) indicate how the fractal charac-
ter emerges with time, T. The first image,
shown in Fig. 2(a), was recorded 5 sec-
onds into the painting process and fo-
cuses on one of the islands. At this initial
stage, the painting was not yet fractal, as
confirmed by the plot of Fig. 2(e), which
fails to condense onto a straight line.
Note also that LR lies at the extreme right
of the graph—the pattern is so sparse
that only at the largest L values does the
technique interpret the pattern as a
filled 2D plane. As the painting evolves
with time, the resolution limit moves to
a smaller L value as the density of the pat-
tern increases. This rise in pattern den-
sity with time is quantified in Table 1, in
which the percentage of the canvas area
occupied by the painted pattern, A, is
shown to rise rapidly over the first
minute—by T � 47s, more than two-
thirds of the surface is covered with
paint. How this paint is distributed
across the canvas surface is displayed in
Figs 2(i–l), where the local pattern den-
sity, P, is plotted as a function of the x
(width) and y (height) position coordi-
nates within the canvas. To calculate P at
a given location on the canvas, a square
of side length L � 0.56 cm is drawn at
that location. Within this square, the
percentage of the canvas surface area
filled by the painted pattern is then cal-
culated. P is plotted between 0 and
100%, while x and y are plotted between
0 and 69 cm. Figures 2(i–l) show that the
rapid rise in A with time is accompanied
by an increase in spatial uniformity—a
signature of Pollock’s fractal patterning.
The graphs of Figs 2(e–h) confirm this
introduction of fractal content. By T �
27s, the graph in Fig. 2(g) identifies the
pattern as fractal, and we obtain D � 1.72
from the gradient. By T � 47s, D has
risen to 1.89, reflecting the rich com-
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Table 1. A summary of the anchor
layer’s parameters as they evolve
during the first 47 seconds of the
painting process (see the text for
the definition of each parameter).

T (sec) D LR (cm) A (%)

5 non-fractal 34.8 3.3
20 1.52 8.4 16.5
27 1.72 3.9 42.5
47 1.89 3.1 70.2



plexity of fractal structure in the pattern
shown in Fig. 2(d). At this stage, after less
than 1 minute, the crucial stage of Pol-
lock’s fractal generation process is over:
the anchor layer has been defined.

PERCEPTION OF THE FRACTAL
PATTERNS
Labeling the formation of the anchor
layer phase one, and the subsequent
multi-layer fine-tuning process phase
two, we note that for some of Pollock’s
works, there was also a phase three,
which took place after the painting pro-
cess was completed. The uniformity and
fractal character of the completed pat-
terns sometimes deteriorated towards
the canvas edge. To compensate for this,
Pollock cropped some of his canvases
after he had finished painting, remov-
ing the outer regions of the canvas and
retaining the highly fractal central re-
gions. The completed paintings, gener-
ated by this highly systematic
three-phase process, follow the fractal
scaling relationship (as detected by a
straight line within the scaling plots)
with remarkable accuracy and consis-
tency. How did Pollock arrive at this re-
markable fractal-generation process?
Some insight can be obtained by con-
sidering investigations of human aes-
thetic judgments of fractal images. A
recent survey performed by one of the
authors (Taylor) revealed that, out of
120 people questioned, over 90% of sub-
jects found fractal imagery to be more
visually appealing than non-fractal im-
agery, and it was suggested that this
choice was based on a fundamental ap-
preciation arising from humanity’s ex-
posure to Nature’s fractal patterns [15].
The survey highlights the possibility that

the enduring popularity of Pollock’s
Fractal Expressionism is based on an in-
stinctive appreciation for Nature’s frac-
tals shared by Pollock and his audience.

It is clear from this analysis that Pol-
lock’s painting process was geared to
more than simply generating a fractal
painting—otherwise he could have
stopped after 20 seconds (see Figs
2[b,f]). Instead he continued beyond this
stage and used the three-phase process
over a period lasting up to 6 months. The
result was a fine-tuning of the patterns to
produce a fractal painting described by
a highly specific D value. In Fig. 3(a) the
D values of eight paintings are plotted
against the year in which they were
painted. Our investigations show that
Pollock refined his technique through
the years, with the D value of his com-
pleted paintings rising from 1.12 in his
early attempts in 1945 to 1.72–1.89 at his
peak in 1950–1952. Art historians cate-
gorize Pollock’s development of the drip
technique into his “preliminary” phase
(circa 1943), his “transitional” phase
(circa 1947) and his “classic” phase (circa
1950) [16]. Figure 3(a) indicates a rapid
increase in D during the evolution from
the “preliminary” to the “transitional”
phase as he established his technique, fol-
lowed by a more gradual increase as he
refined his technique towards the “clas-
sic” style. Each of the D values shown in
Fig. 3(a) is re-plotted against canvas area
in Fig. 3(b). Similarly, in Fig. 3(c) the D
values are re-plotted against the per-
centage of the canvas area covered by
paint. These plots reveal a correlation be-
tween the high D values of his “classic”
patterns and his use of a large canvas and
high pattern density during that period.
Why would Pollock refine his process to
generate fractals with high D values? It is

interesting to note that, in a recent sur-
vey designed to investigate the relation-
ship between a fractal pattern’s D value
and its aesthetic appeal, subjects ex-
pressed a preference for patterns with D
values of 1.8 [17], similar to Pollock’s
“classic” paintings of 1950. Although a
subsequent survey reported much lower
preferred values of 1.26, this second sur-
vey indicated that self-reported creative
individuals have a preference for higher
D values [18], perhaps compatible with
Pollock’s quest to paint patterns with
such values.

Finally, in addition to exploring the
aesthetic appeal of Pollock’s patterns,
perception studies also may provide an
answer to one of the more controversial
issues surrounding Pollock’s drip work.
Over the last 50 years there has been per-
sistent theoretical speculation that Pol-
lock painted illustrations of objects (for
example, human figures) during the
early stages of a painting’s evolution and
then obscured them with subsequent lay-
ers of paint [19]. Since fractal patterns
do not incorporate any form of figurative
imagery, our analysis excludes the possi-
bility that the initial stages of his paint-
ings featured painted figures. Why, then,
is the “figurative” theory so persistent? A
possible answer can be found by consid-
ering our analysis in the context of the
perception studies by Rogowitz and Voss
[20]. These studies indicate that people
perceive imaginary objects (such as
human figures, faces, animals, etc.) in
fractal patterns with low D values. For
fractal patterns with increasingly high D
values, this perception falls off markedly.
Rogowitz and Voss speculate that their
findings explain why people perceive im-
ages in the inkblot psychology tests first
used by Rorschach in 1921. Their analy-
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Fig. 3. (a) The fractal dimensions D of eight Pollock paintings are plotted against the years in which they were painted. The dashed lines are
guides to the eye indicating two approximate rates of evolution in D through the years. (b) The D values are plotted against canvas area for
the same eight paintings plotted in (a). (c) The D values are plotted against the percentage of the canvas area occupied by the pattern. 
(© Richard Taylor)



sis shows that inkblots are fractal with a
D value close to 1.25 and thus will trigger
perceptions of objects within their pat-
terns. Although this is not discussed by
Rogowitz and Voss, their results may ex-
plain the Surrealist method of “free as-
sociation,” in which the artists stared at
painted patterns until an image “ap-
peared” [21]. It could be that the pat-
terns produced by the Surrealists (e.g.
Ernst’s “frottage,” Dominguez’s “decal-
comania” and Miró’s washes) were frac-
tal patterns of low dimension. These
findings also explain why figures might
be perceived in the initial layers of Pol-
lock’s paintings. In Fig. 2, the fractal
analysis of the evolution of Pollock’s pat-
terns shows that his paintings started with
a low D value, which then gradually rose
as a painting evolved towards comple-
tion. Thus it is consistent with the find-
ings of Voss and Rogowitz that an
observer would perceive objects in the
initial patterns of a Pollock painting
(even though they are not there) and
that these objects would “disappear” as D
rose to the high value that characterized
the completed pattern.

CONCLUSIONS
The profound nature of Pollock’s con-
tribution to modern art lies not only in
the fact that he could paint fractals on a
canvas but in how and why he did so. In
this paper we have used a fractal analysis
technique to examine the painting pro-
cess Pollock used to construct his drip
paintings. By analyzing film of Pollock
painting, we conclude that Pollock used
a remarkably systematic method capable
of generating intricate patterns that ex-
hibit fractal scaling criteria with precision
and consistency. Clearly, a discussion of
Pollock’s fractals would be incomplete
without considering the art-historical
context of his work. It is hoped therefore
that the results presented here will stim-
ulate a debate among scientists, psychol-
ogists and art theoreticians regarding the

artistic significance of Pollock’s fractal
drip paintings.
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