Differences between revisions 66 and 67
Revision 66 as of 2015-03-12 17:05:49
Size: 22494
Editor: JunHu
Comment:
Revision 67 as of 2015-10-28 15:45:42
Size: 19457
Editor: JunHu
Comment:
Deletions are marked like this. Additions are marked like this.
Line 19: Line 19:
Applicants to this PhD research shall have a background in industrial design, digital arts and interactive media, human-computer interaction, computer science, information technology, electrical engineering, bio-medical engineering, mechanical engineering and physics. We are aiming at recruiting 4-8 CSC Ph``Ds in 2015. Applicants to this PhD research shall have a background in industrial design, digital arts and interactive media, human-computer interaction, computer science, information technology, electrical engineering, bio-medical engineering, mechanical engineering and physics. We are aiming at recruiting up to 8 CSC Ph``Ds in 2016.
Line 21: Line 21:
The applicants can apply for one of the following topics (this list will be extended in early January 2015): The applicants can apply for one of the following topics:
Line 23: Line 23:
 1. ''3D Modelling and Generative Design in Wearable Technology''. As a PhD you will assist in research activities 3D modelling and generative design for 3D printing pertaining to wearable technology and/or fashion. You will work in collaboration with a team to explore a body-centric approach to the use of 3D printing in fashion. The team will combine the expertise from 3D printing and generative design (current vacancy) with motion sensing, performance arts and fashion design. Together with the team, you will develop a series of garments to explore how 3D printed pieces integrated in textiles may allow for new dynamic expressions of the body. You will analyse and interpret the results together with the head designer. You will mostly be based at the Technical University of Eindhoven.  1. ''Interactive Sound in Everyday Life''. In this project you will explore the possiblities of sound at the interface with everyday life. Compared to the visual modality, the auditory modality exists over space, i.e. you do not have to face the source of sound the hear it. This makes sound well suited to support so-called ‘eyes-busy, hands-busy’ tasks. It can be used to support people's main task, to monitor ongoing tasks, or to carry out a secondary task in the periphery of your attention. In this project we will investigate the qualities of sound that make it the prime modality to support peripheral interaction. A drawback of using sound is that it cannot be ignored by other people in the environment for whom the ongoing interaction is not relevant; people can not close their ears! This gives rise to special challenges to the sound design of the information. The aesthetical qualities of the sound design should be informative for users interacting with the auditory interface but also valued for of its ‘beauty' by people who do not have a stake in the interaction. The specific application that will be chosen in this project will be decided upon after an initial phase in which the literature will be studied and some small explorative sound design studies are conducted. For now we envision two possible application domains that link to other projects in the department: the ‘Peripheral Interaction' project in which the use of audio to support the communication between children or students with their teachers could be further investigated, or the ‘Materialising Memoires' project in which the importance and use of audio for supporting people’s autobiographical memory would be the focus. A PhD student working in the ‘Interactive Sound in Everyday Life’ project should have a very strong interest in the scientific aspects of sound (and music) and preferably has experience in sound design for music or other application domains.
Line 25: Line 25:
 1. ''Design of grounded interactive systems''. The ability of an artificial system to autonomously establish an evolving connection between sensing and the meaning of what was sensed is central to its operation in the real world. The establishment of such a connection is inseparable from the ability of the system to act, since grounded meaning can only be achieved through action, i.e. the ability of the system to experience the world while interacting with it. In this context, the terms of Physical and Social Symbol Grounding have emerged to name the processes of connecting symbols to real world objects by a single agent (Physical Symbol Grounding), and for establishing shared meaning in populations of agents (Social Symbol Grounding). Another relevant concept is of Sensory-Motor Contingencies that is based on the assumption that the complex modes of social interaction are grounded in basic sensorimotor interaction patterns. This project aims to explore the grounding of meaning in interactive systems through bottom-up and top-down processes. Grounding of meaning should grow from autonomously establishing meaning through sensory-motor interactions of systems with different level of complexity to establishing of shared understanding between an artificial agent (system) and a human. The explorations should result in a framework for design of grounded interactive systems. This project provides the opportunity for PhD candidates to gain and combine expertise in technology and human development. References: https://ai.vub.ac.be/sites/default/files/steels-08e.pdf
Line 26: Line 27:
 1. ''Interaction Visualization with Particle Interaction Velocimetry''. In this research we will develop a ‘Particle Interaction Velocimetry’ (PIV) technique for flow visualization, analysis and design of human-system interactions. Interaction visualization (IV) with PIV will become an established tool for supporting interaction design research. Similar to recent advances in physical modeling instrumentation have facilitated flow visualization to support research. Interaction visualization will be performed using the new PIV technique whereby 3D holographic tracking systems can measure and trace the movements of all system parts as well as visualizing these movements and relationships among them in 3D space. Interaction visualization with PIV will provide many advantages for interaction design and modeling: it gives better insight into interaction patterns caused by affordances, attractions and obstructions; it can give quick feedback for interaction alteration ideas; it can reduce user experiment time because fixed bed experiments can be performed to evaluate interaction patterns. Scour magnitude can then be inferred from the interaction patterns; the new visualization technique can eventually be used in conjunction with traditional video recordings to measure velocity structures and other relevant aspects.  1. ''Serious Gaming and Medical Simulation''. Surgeons/nurses/neonatal caregivers and other hospital staff practice their skills on simulators, actors and manikins, where they apply and refine the procedural knowledge that they learnt in another (e.g. classroom) setting. Serious games have been introduced to bridge this transfer gap; however as virtual simulators they too are often highly serious and more a training than a learning tool, and therefore may not reach their full potential. This project explores the potential for play as a way to learn optimal strategies and engender attitude change of the physician in training, in order to improve patient safety. The relationship between fantasy play and serious simulation in a hospital setting is scrutinized and through the development of game prototypes tested and turned into game design guidelines for games for health. The TU/e DI group has excellent working relations with neonoatologists at MMC hospital, Philips X-ray, gynaecoloists at VMK hospital and the Catharina Hospital, one of the top cardiac centers of the Netherlands.
Line 28: Line 29:
 1. ''Social interaction and wellbeing''. We explore the impact of Social networks, augmented reality and new lighting and display technologies in on the modern society, the impact of the bottom-up power and the much flattened structure of the social media on societal transformations, the impact of the social and systematic perspective of intelligent systems, products and related services on industrial design, and in turn, the possible impact of industrial design on these on-going societal and technical changes. Application-wise the design research on social computing can be integrated with health and care for the ageing society where the resource of the formal care is limited. We are interested in the issues and opportunities of applying new material and technologies in lighting, displays, wearables and mobile devices for social wellbeing, for example designing connected environments in which the inhabitants are empowered by wearable senses and smart objects for social bounding, and designing interactive art installations that augment architecture, landscape and public arts with digital and social media in public spaces for social connectedness and inclusion.  1. ''Making sense of smart things''. A future where invisible technologies seamlessly support people’s daily activities has been proposed in paradigms such as Ubiquitous Computing, Pervasive Computing, and Ambient Intelligence. After decades of research, smart things have become commercially available and are being adopted into people’s homes. In the 2015 International Consumer Electronics Show (CES) in Las Vegas, more than 900 companies showcased smart products, services, and technologies. The market for these smart things is predicted by International Data Corporation (IDC) to exceed US$ 7 trillion by 2020. However, several long-standing challenges for the smart systems remain unresolved. One such challenge is the “intelligibility” problem (Bellotti and Edwards, 2001): how people can understand smart systems, and vice versa. Time and time again, studies of people living in smart environments revealed mutual misunderstanding — smart things fail to decipher intents behind sensed user behaviours, and people fail to understand the reasoning behind actions taken by smart things. Design, as defined by Klaus Krippendorff (1989), "is making sense (of things)". In this research, we will focus on "making sense of smart things": how to design for interaction with systems of smart thing, so that people can better communicate their intents to the systems, and the systems can better express their "intelligence" to the people --- enabling mutual understanding and possibly even empathy. We are looking for a Ph.D. candidate with background in machine learning, data visualization, user experience design, and related fields.
Line 30: Line 31:
 1. ''Body centric design in wearable technology''. As a PhD you will assist in research activities in movement-based design, bodily expression and movement analysis pertaining to wearable technology and/or fashion. You will work in collaboration with a team to explore a body-centric approach to the use of 3D printing in fashion. The team will combine the expertise from 3D printing and generative design with motion sensing, performance arts and fashion/product/interaction design (current vacancy). Together with the team you will develop a series of garments to explore how 3D printed pieces integrated in textiles may allow for new dynamic expressions of the body. You will analyse and interpret the results together with the head designer. You will mostly be based at the Technical University of Eindhoven.  1. ''A Toolkit to Support Design Thinking for Children''. The main objective of the project is to develop a learning and technological toolkit to support children to use and develop their creativity and innovation skills during their primary school years. The toolkit will equip children with the knowledge, skills, and attitudes pertaining to design thinking, it will familiarize them with concepts, tools, as well as the reflective mentality, and the dynamic process and practice of design thinking. Particular emphasis will be put on the development and application of communication and collaboration skills.
The project will combine a design based learning approach with digital toolkits to support children in developing their creative skills. The PhD will conduct design research in diverse solutions are created and examined to verify the manner in which the creative skills of the children are being developed. Requirements for candidates: The Phd candidate should have strong design skills and some experience of empirical research approaches.
Line 32: Line 34:
 1. ''Apps as Research Probes''. This project aims to explore the use of massive scale app deployments through app stores as a way to collect data and conduct experiments involving actual users rather than user representatives. Whereas a lot of user centred design research and design research proceed with experiments involving representative users recruited by conventional means (flyers, mail, snowballing, etc.), there is an opportunity to collect data in the field, at real time, and to evolve different studies by launching applications. App evaluation can involve the logging of use data, contextual information collected by sensors, surveying users, etc. Methodological and ethical issues arise. Demographics and organizational requirements put also special requirements for the tool and the approach.
Requirements for candidates: Affinity with software development, mobile apps, interaction design
Line 33: Line 37:
 1. ''CONCEPT project I''. This project concerns the development of tools to support designers working in distributed teams. Specifically we look towards tools that allow designers to maintain a sense of awareness of the workspace, who is working on what, link to management tools, and other tools that help designers work individually or in groups. The PhD will seek to elaborate on the general notion of workspace awareness for the specific context of distributed design teams. Based on this theoretical understanding, and supported by specific design cases, a tool will be created that provides cues regarding the activity of design team members and other collaborators. This tool will be deployed in two contexts: professional design teams in small and medium enterprises and design education, helping teams of engineers or designers work together on design assignments. This research will build upon and complement the research done in the context of the EU funded project Concept http://www.concept-fp7.eu/. The PhD project will proceed with iteratively designing, developing and testing an application to support collaborating designers, and developing an understanding of the value and emergent patterns of use of collaboration cues in the context of a design project. PhD candidates are expected to have a solid software engineering background and the interest to work closely with people using their application. Beyond general skills in research, candidates will develop expertise in the area of groupware design and evaluation, in studying and analyzing creative group work, and in mixed methods research (combining quantitative and qualitative methods).  1. ''Wearables for posture monitoring and correction''. This project aims to develop innovative wearable solutions for posture monitoring. Posture monitoring is important in a few domains: computer workers need to maintain correct ergonomic posture to avoid neck pain and lower back pain. During rehabilitation, correct execution of exercises while maintaining posture is crucial. Posture correction can be vital for workers lifting weights in order to avoid injury. Low back pain can be prevented or even cured by posture correction. Finally posture can be an indicator of healing after injury in order to enable evidence based interventions by physicians. Depending on which pat of the body we wish to monitor, the challenges of precise and accurate posture monitoring vary. It appears that many commercial products that claim to monitor posture often provide inaccurate measures, that provide false notifications too often, thus lacking the ability to positively influence people’s behaviour. A suitable design of such a system should combine a) anatomically correct placement of sensors and modelling posture b) a comfortable and aesthetically pleasing garment or other wearable that can be worn throughout the day c) the design of suitable motivational approach that will be effective in changing people’s posture related behaviour. The project integrates challenges in combining sensors with wearables, writing simple software applications, and designing and evaluating motivational approaches tht will be implemented by the hardware-software combination. Requirements for candidates: Affinity with designing wearables, arduino programming. Experience with textile electronics is an added bonus.
Line 35: Line 39:
 1. ''Crowdsourcing design''. Crowdsourcing can be loosely defined as a task that can given to a large, anonymous group of users, connected through the Internet and the users' aggregated response constitutes a solution to the task. Crowdsourcing has been applied from its very beginning to a plethora of creative industries; designing clothes [Threadless]; designing graphics [99designs]; photography and animation [iStockphoto]. In spite of the all the existing services, crowdsourcing is still in its infancy. In this project you will be asked to explore ways in which crowdsourcing can support designers and design work. Such a project raises several research questions: what part of designer's work can be crowdsourced? How much of the designer's context is necessary for crowdworkers to be able to perform the requested tasks? What are the privacy concerns and how can they be addressed? The project shall proceed followin an action research approach, designing, developing and deploying a platform for crowdsourcing, and using it in the context of design projects. Requirements for candidates: Affinity with software development, online communities/social media, interaction design is required.
Line 36: Line 41:
 1. ''CONCEPT project II''. Enhancing Creative Experience Design with the help of Storytelling Tools. As explained by Hassenzahl and others, experience design is very closely related to storytelling, so designers wanting to address experience design will need to master efficient and effective ways for communicating their design stories with both end users and other stakeholders. Co-constructing stories with end users has also been shown to be a promising way for designers to understand the user context and values they are designing for. While there is ample expertise in areas such as theatre and film making with constructing stories as a team effect, the skills required for this are insufficiently known to product and service designers, which is why a new method, called Storyply, has been developed and fine-tuned within a large number of design workshops. This method also helps designers in dividing the total effort into more manageable sub-activities, and also offers support for these sub-activities. Up to now, the method has always relied on physical media, such as posters and post-its. To bring out the true power of the method, it needs to be developed into a digital tool. The potential advantages of such a digital tool over analog media are manifold, i.e.,
  * making it easier to maintain multiple stories at the same time, which is known to promote creativity,
  * making it easier to maintain the history of the design process, which can help to study creativity in vivo instead of having to rely on post-hoc reporting,
  * making it more easy for people to cooperate, also from remote locations,
  * overcoming the limitations of static media, such as including animations in the storyboards, etc.
  * In short, having a digitized tool for supporting storytelling activities will not only help designers in experience design, but can also be used to coordinate efforts of design teams, and to maintain a history of the design process.
 1. ''Designing interaction resources for everyday practitioners''. This research explores the value of designing computational artifacts that are resources for of everyday practices. The research builds on our previous studies of everyday practices such as family life, amateur repair, sustainable DIY, hobbyists, Steampunk, and skateboarding for what these practices can tell us about design and, in particular, the design of technologies. We describe our understanding of design through this research as everyday design. Generally, we argue that everyone is a designer. Within this view, design is ongoing in the creative use and reuse of design artifacts. Design is comprised of a great multiplicity of practices that share in their need to manipulate their designed worlds to improve fit and quality through ongoing transformations and adaptations, yet what drives each practice and how they are carried out is unique and diverse. The project aims to explore the characteristics and implications of this direction for HCI and interaction design. A particular focus of the project will include the need for designers to shift attention to technologies as materials (or objects) within practices rather than configurations of functions and interfaces. In particular, the PhD student will conduct design research that will advance the following concepts: the design of technological objects as resources for practitioners; the simplification or minimization of interaction to fit competences and motivations; and the assessment of design outcomes for their interpretive potential by everyday practitioners as much as their promised utility.
Line 43: Line 43:

 1. ''DO CHANGE – Cardiac Health Management''. The primary objective of the Do CHANGE project is to develop a total health ecosystem for disease management of citizens with high blood pressure and patients with heart disease or heart failure. The system will give patients access to a set of specialized and personalized health services in a near real-time fashion. This totally new and disruptive system will incorporate behavior change methods, in conjunction with new innovative wearable/portable tools, monitor behavior and clinical parameters in normal living situations. The objectives will be achieved by empowering patients with tools and services. A cyclic co-design methodology with end-users and health care professionals will be followed during the entire project. An iterative, cyclic process will be applied. The process guarantees that not only the tools + services are refined and developed from concept to practical usage and evaluation, but simultaneously the mutual understanding of the collaborator's values, ways of working and limitations is refined and developed as well. This is essential because the partners have different backgrounds and roles such as user, service-provider, technology developer, and integrator. Each cycle consists of (1) requirements definition (2) co-design and implementation (3) usage (4) cooperative evaluation. Each cycle takes one year precisely so a smooth yearly rhythm of meetings and workshops emerges as soon as possible. We are looking for a PhD candidate with background in Industrial Design, Electrical Engineering or Biomedical Engineering.

 1. ''GHOST project''.Interactive technology has typically been associated with desktop computers and more recently smartphone devices and tablets, allowing lay people to easily access large amounts of data and powerful computation with ease. The last 20 years have brought about a large shift in the focus of computing from computing devices to every day objects, thanks to the emerging paradigms of tangible and embodied computing: physical objects become handles for computational functionality and natural interfaces for accessing data. The next step in this progression concerns liberating interactivity from the confines of dedicated computational devices and becoming influencing the form of every day objects: interactivity can affect the very shape of objects. Displays can change shape, and every shape changing object can be a display. While the technical feasibility of such shape changing displays has been demonstrated and the enabling technologies are steadily improving, explorations of the potential application and the way to design such interactivity is limited by technical challenges: designers who are capable of exploring such technologies are having to invest substantial effort on getting simple demonstrators working, rather than explore interactivity as such. This project aims to lower the threshold for designers to explore shape changing interaction, by creating a toolkit that will make transparent to designers some of the electromechanical and control challenges relating to the engineering of shape changing interactivity. This toolkit will allow easy composition of shape changing interaction from elementary shape changing components, supported by a simple programming interface. This PhD project will build upon the technical advances booked in the GHOST project (http://www.ghost-fet.com/) aiming to make this technology more accessible to designers without an engineering background. We seek candidates with a solid engineering background in an area related to mechanical, electrical or computer engineering. This project provides the opportunity for PhD candidates to become familiar with research in a technological field while expanding their engineering knowledge and applying it in a manner that transcends a single engineering discipline.

 1. ''Learning Analytics for Future Design Education with a Focus on Collaborative Tools and Visualization''. Design education is changing, more and more collaborative and distributed tools will find their way into higher education on design and related subjects. Currently, there are several projects exploring the future of teacher-student feedback techniques with a wide scope of textual to visual tools, partly developed in-house, partly by external partners. While early pilot are already conducted, learning analytics can help assess their impact and also help focus these efforts in the future. This PhD project has a main directions, but allows for emphasis on the two parts depending on the candidate’s expertise: (1) analyzing the usage of feedback techniques and services offered, and (2) developing new feedback services for design students that improve acceptance, efficiency, effectiveness and feedback quality. Candidates for this project should match one of the following expertise profiles:
  * Strong background in computer science, data science or related subjects, with affinity for design and expertise in working with designers
  * Strong background in empirical research methods with proven expertise in working independently on a research subject

 1. ''Monitoring movement of new born infants with wearable sensor systems''. Monitoring movement of new born infants especially the premature babies is critical for their treatment and development. Early detection of signs pointing to an unfavorable outcome is necessary to provide a specific early intervention on motor development. Based on Movement Science, several types of equipment have been developed to record the dynamic motion of the joints and segments of the body for analysis human movements. By combining motion analysis and for example electromyography (EMG), biomechanics laboratories have gained greater insight into the effects of pathology (both central and peripheral), maturation and development, and skill acquisition on selected human movements. In current practice, movements of babies are recorded and doctors analyze the videos for diagnosis and decision making, which is time consuming and highly dependent on the doctors’ experience. The goal of this project is to design and develop a wearable sensor system, for example in a form of a smart jacket, which provides monitoring of the movement in a comfortable way. The project will be carried out in collaboration with Máxima Medical Center in the Netherlands. The project will consist of design, implementation and validation. We are looking for a PhD candidate with background in Electrical Engineering or Biomedical Engineering.

 1. ''Narcolepsy''. Narcolepsy is a life-long sleep disorder, deeply affecting the lives of patients. Currently, physicians monitor symptom severity and treatment response relying purely on subjective reporting of patients of their recall of symptoms over longer periods of time. There is no method to improve the frequency and reliability of symptom reports. Making use of portable personal media like a smartphone may have important potential in this respect, opening up a myriad of avenues to further narcolepsy treatment and monitoring, and –consequently- quality of life.This project aims to design, develop and evaluate a pervasive application that combines unobtrusive monitoring with self-report, to support the clinical treatment of therapy.

 1. ''Smart sock''. This project aims to explore intelligent wearable technology that will monitor the healing process after surgically treated fractures. Currently treatment is based on generic and historically based advice on the healing process, but not on a specific evidence regarding the healing of each patient. A sock or other device that will be able to measure the quality of the weight bearing and other parameters relating to the healing process, will enable evidence based treatment allowing physicians to tailor and optimize advice to different patients. This PhD is part of a collaborative project, with engineers and clincial experts that will develop a working prototype of this device and evaluate its effectiveness, and wearability.

 1. ''Analyzing Regional Healthcare Data with a Focus on Design Tools and Visualization''. Big Data in the Healthcare sector is one of the most established and richest potential sources of insight in regional care and cure across most developed countries. Analyzing this data demands not only expertise in data science, but also responsibility in terms of privacy and protection of highly conflicting and delicate interests of different involved stakeholders. What is most interesting in this context is the meta-data of care and cure transactions, not necessarily the individual values of blood measurements and x-ray scans; meta-data can reveal prevalence of diseases in certain area, unhealthy or healthy patterns of living, over time distribution of diagnoses and the effectiveness of healthcare throughout the region and over time. Together with our partner, Diagnostiek 4 U, who will provide access to their data warehouse, this PhD project shall target the exploration and analysis of such data, and research methods, techniques, tools for efficient and visual analysis, and design future means to do this. This PhD proposal is embedded in ongoing and growing efforts to stimulate future design with data and tools for design with data.
 1. ''Data-driven design for engaging children in playful sports''. In this project we will examine how to motivate children to engage in sport-like activities by having children experience them as being more as playlike activities. We will examine how to adjust the interactive behaviour of the objects or environment in a sports hall, to the physical play behaviour of the children. We will examine how to gather data and translate this into meaningful playful interactions of the overall system of the children and the interactive environment. The PhD will follow a design research approach developing multiple concepts with input from diverse stakeholders such as children, sports teachers and people from industry. Furthermore, the PhD needs to develop a model for how to gather meaningful interpretations from the data gathered through the system. The project builds on previous design research projects where diverse playful solutions fro motivating children to be physically active were created. Candidates for this project should have a strong background in computer science, data science or related subjects, with affinity for design and expertise in working with designers. They should also have a background in empirical research methods with expertise in working independently on a research subject.

Eindhoven University of Technology (TU/e) has an agreement with the China Scholarship Council (CSC), which enables excellent Chinese students to finish their PhD degrees at TU/e with a 4-year scholarship from the CSC. Students from all Chinese universities are eligible for this program.

PhD in

Creating intelligent systems, products and related services in a societal context

at Department of Industrial Design, Eindhoven University of Technology

2015

The department of Industrial Design (ID) of the Eindhoven University of Technology (TU/e) is located in a highly industrialized region, known as ‘Brainport’. This region is internationally recognized as a top technology area with a special focus on the integration of design and technology. The department was established in close collaboration with the technological industry, and, because of this, focuses its research on the Design of Intelligent Systems, Products and related Services in a societal context. With these intelligent systems it aims at offering new, breakthrough possibilities leading to societal transformations.

Innovative solutions today increasingly address a complex web in which products, services, technologies and user needs are interwoven. This in turn means that innovation is increasingly dependent on agreements within larger groups of stakeholders. Companies can no longer rely solely on technology breakthroughs and incremental product development. Effective differentiation and real added value for the consumer are achieved by incorporating end-user insights in product innovation. This takes on an added significance when designing solutions for the emerging connected, digitally enabled world.

Products and services are increasingly overlapping, everyday products are more intelligent and adaptive, and the focus is on ‘systems' rather than stand-alone devices. Additionally, user needs are evolving over time. Maintaining simplicity and understanding the user in such a landscape becomes a challenge. The need to be connected and the need for the customer to be an integral part of the value chain has forced all leading industrial and political bodies to incorporate human values, needs and desires from the very beginning of the innovation process. Innovation in this climate requires social science, design, engineering and business to be brought together in an interdisciplinary way. Industrial design should simultaneously support and catalyze the contributions of all participants, enabling a collaborative exploration of potential futures that can be translated to each partner's individual perspective.

As society exits the Industrial Age, so the excesses of daily production and consumption patterns are becoming evident. The ‘old-new' way of doing things, based on productivity and more of everything and faster, was based on the metaphor of the machine. Today, the issue is about relevant and meaningful innovation for society, for cultures and for people. Integration of the Design, Engineering and Social Sciences perspectives will enable us to create intelligent systems, products and related services in a societal context based on ‘human values' rather than on the ‘efficiency' criterion that has saturated today's design.

Applicants to this PhD research shall have a background in industrial design, digital arts and interactive media, human-computer interaction, computer science, information technology, electrical engineering, bio-medical engineering, mechanical engineering and physics. We are aiming at recruiting up to 8 CSC PhDs in 2016.

The applicants can apply for one of the following topics:

  1. Interactive Sound in Everyday Life. In this project you will explore the possiblities of sound at the interface with everyday life. Compared to the visual modality, the auditory modality exists over space, i.e. you do not have to face the source of sound the hear it. This makes sound well suited to support so-called ‘eyes-busy, hands-busy’ tasks. It can be used to support people's main task, to monitor ongoing tasks, or to carry out a secondary task in the periphery of your attention. In this project we will investigate the qualities of sound that make it the prime modality to support peripheral interaction. A drawback of using sound is that it cannot be ignored by other people in the environment for whom the ongoing interaction is not relevant; people can not close their ears! This gives rise to special challenges to the sound design of the information. The aesthetical qualities of the sound design should be informative for users interacting with the auditory interface but also valued for of its ‘beauty' by people who do not have a stake in the interaction. The specific application that will be chosen in this project will be decided upon after an initial phase in which the literature will be studied and some small explorative sound design studies are conducted. For now we envision two possible application domains that link to other projects in the department: the ‘Peripheral Interaction' project in which the use of audio to support the communication between children or students with their teachers could be further investigated, or the ‘Materialising Memoires' project in which the importance and use of audio for supporting people’s autobiographical memory would be the focus. A PhD student working in the ‘Interactive Sound in Everyday Life’ project should have a very strong interest in the scientific aspects of sound (and music) and preferably has experience in sound design for music or other application domains.

  2. Design of grounded interactive systems. The ability of an artificial system to autonomously establish an evolving connection between sensing and the meaning of what was sensed is central to its operation in the real world. The establishment of such a connection is inseparable from the ability of the system to act, since grounded meaning can only be achieved through action, i.e. the ability of the system to experience the world while interacting with it. In this context, the terms of Physical and Social Symbol Grounding have emerged to name the processes of connecting symbols to real world objects by a single agent (Physical Symbol Grounding), and for establishing shared meaning in populations of agents (Social Symbol Grounding). Another relevant concept is of Sensory-Motor Contingencies that is based on the assumption that the complex modes of social interaction are grounded in basic sensorimotor interaction patterns. This project aims to explore the grounding of meaning in interactive systems through bottom-up and top-down processes. Grounding of meaning should grow from autonomously establishing meaning through sensory-motor interactions of systems with different level of complexity to establishing of shared understanding between an artificial agent (system) and a human. The explorations should result in a framework for design of grounded interactive systems. This project provides the opportunity for PhD candidates to gain and combine expertise in technology and human development. References: https://ai.vub.ac.be/sites/default/files/steels-08e.pdf

  3. Serious Gaming and Medical Simulation. Surgeons/nurses/neonatal caregivers and other hospital staff practice their skills on simulators, actors and manikins, where they apply and refine the procedural knowledge that they learnt in another (e.g. classroom) setting. Serious games have been introduced to bridge this transfer gap; however as virtual simulators they too are often highly serious and more a training than a learning tool, and therefore may not reach their full potential. This project explores the potential for play as a way to learn optimal strategies and engender attitude change of the physician in training, in order to improve patient safety. The relationship between fantasy play and serious simulation in a hospital setting is scrutinized and through the development of game prototypes tested and turned into game design guidelines for games for health. The TU/e DI group has excellent working relations with neonoatologists at MMC hospital, Philips X-ray, gynaecoloists at VMK hospital and the Catharina Hospital, one of the top cardiac centers of the Netherlands.

  4. Making sense of smart things. A future where invisible technologies seamlessly support people’s daily activities has been proposed in paradigms such as Ubiquitous Computing, Pervasive Computing, and Ambient Intelligence. After decades of research, smart things have become commercially available and are being adopted into people’s homes. In the 2015 International Consumer Electronics Show (CES) in Las Vegas, more than 900 companies showcased smart products, services, and technologies. The market for these smart things is predicted by International Data Corporation (IDC) to exceed US$ 7 trillion by 2020. However, several long-standing challenges for the smart systems remain unresolved. One such challenge is the “intelligibility” problem (Bellotti and Edwards, 2001): how people can understand smart systems, and vice versa. Time and time again, studies of people living in smart environments revealed mutual misunderstanding — smart things fail to decipher intents behind sensed user behaviours, and people fail to understand the reasoning behind actions taken by smart things. Design, as defined by Klaus Krippendorff (1989), "is making sense (of things)". In this research, we will focus on "making sense of smart things": how to design for interaction with systems of smart thing, so that people can better communicate their intents to the systems, and the systems can better express their "intelligence" to the people --- enabling mutual understanding and possibly even empathy. We are looking for a Ph.D. candidate with background in machine learning, data visualization, user experience design, and related fields.

  5. A Toolkit to Support Design Thinking for Children. The main objective of the project is to develop a learning and technological toolkit to support children to use and develop their creativity and innovation skills during their primary school years. The toolkit will equip children with the knowledge, skills, and attitudes pertaining to design thinking, it will familiarize them with concepts, tools, as well as the reflective mentality, and the dynamic process and practice of design thinking. Particular emphasis will be put on the development and application of communication and collaboration skills.

The project will combine a design based learning approach with digital toolkits to support children in developing their creative skills. The PhD will conduct design research in diverse solutions are created and examined to verify the manner in which the creative skills of the children are being developed. Requirements for candidates: The Phd candidate should have strong design skills and some experience of empirical research approaches.

  1. Apps as Research Probes. This project aims to explore the use of massive scale app deployments through app stores as a way to collect data and conduct experiments involving actual users rather than user representatives. Whereas a lot of user centred design research and design research proceed with experiments involving representative users recruited by conventional means (flyers, mail, snowballing, etc.), there is an opportunity to collect data in the field, at real time, and to evolve different studies by launching applications. App evaluation can involve the logging of use data, contextual information collected by sensors, surveying users, etc. Methodological and ethical issues arise. Demographics and organizational requirements put also special requirements for the tool and the approach.

Requirements for candidates: Affinity with software development, mobile apps, interaction design

  1. Wearables for posture monitoring and correction. This project aims to develop innovative wearable solutions for posture monitoring. Posture monitoring is important in a few domains: computer workers need to maintain correct ergonomic posture to avoid neck pain and lower back pain. During rehabilitation, correct execution of exercises while maintaining posture is crucial. Posture correction can be vital for workers lifting weights in order to avoid injury. Low back pain can be prevented or even cured by posture correction. Finally posture can be an indicator of healing after injury in order to enable evidence based interventions by physicians. Depending on which pat of the body we wish to monitor, the challenges of precise and accurate posture monitoring vary. It appears that many commercial products that claim to monitor posture often provide inaccurate measures, that provide false notifications too often, thus lacking the ability to positively influence people’s behaviour. A suitable design of such a system should combine a) anatomically correct placement of sensors and modelling posture b) a comfortable and aesthetically pleasing garment or other wearable that can be worn throughout the day c) the design of suitable motivational approach that will be effective in changing people’s posture related behaviour. The project integrates challenges in combining sensors with wearables, writing simple software applications, and designing and evaluating motivational approaches tht will be implemented by the hardware-software combination. Requirements for candidates: Affinity with designing wearables, arduino programming. Experience with textile electronics is an added bonus.

  2. Crowdsourcing design. Crowdsourcing can be loosely defined as a task that can given to a large, anonymous group of users, connected through the Internet and the users' aggregated response constitutes a solution to the task. Crowdsourcing has been applied from its very beginning to a plethora of creative industries; designing clothes [Threadless]; designing graphics [99designs]; photography and animation [iStockphoto]. In spite of the all the existing services, crowdsourcing is still in its infancy. In this project you will be asked to explore ways in which crowdsourcing can support designers and design work. Such a project raises several research questions: what part of designer's work can be crowdsourced? How much of the designer's context is necessary for crowdworkers to be able to perform the requested tasks? What are the privacy concerns and how can they be addressed? The project shall proceed followin an action research approach, designing, developing and deploying a platform for crowdsourcing, and using it in the context of design projects. Requirements for candidates: Affinity with software development, online communities/social media, interaction design is required.

  3. Designing interaction resources for everyday practitioners. This research explores the value of designing computational artifacts that are resources for of everyday practices. The research builds on our previous studies of everyday practices such as family life, amateur repair, sustainable DIY, hobbyists, Steampunk, and skateboarding for what these practices can tell us about design and, in particular, the design of technologies. We describe our understanding of design through this research as everyday design. Generally, we argue that everyone is a designer. Within this view, design is ongoing in the creative use and reuse of design artifacts. Design is comprised of a great multiplicity of practices that share in their need to manipulate their designed worlds to improve fit and quality through ongoing transformations and adaptations, yet what drives each practice and how they are carried out is unique and diverse. The project aims to explore the characteristics and implications of this direction for HCI and interaction design. A particular focus of the project will include the need for designers to shift attention to technologies as materials (or objects) within practices rather than configurations of functions and interfaces. In particular, the PhD student will conduct design research that will advance the following concepts: the design of technological objects as resources for practitioners; the simplification or minimization of interaction to fit competences and motivations; and the assessment of design outcomes for their interpretive potential by everyday practitioners as much as their promised utility.

  4. Data-driven design for engaging children in playful sports. In this project we will examine how to motivate children to engage in sport-like activities by having children experience them as being more as playlike activities. We will examine how to adjust the interactive behaviour of the objects or environment in a sports hall, to the physical play behaviour of the children. We will examine how to gather data and translate this into meaningful playful interactions of the overall system of the children and the interactive environment. The PhD will follow a design research approach developing multiple concepts with input from diverse stakeholders such as children, sports teachers and people from industry. Furthermore, the PhD needs to develop a model for how to gather meaningful interpretations from the data gathered through the system. The project builds on previous design research projects where diverse playful solutions fro motivating children to be physically active were created. Candidates for this project should have a strong background in computer science, data science or related subjects, with affinity for design and expertise in working with designers. They should also have a background in empirical research methods with expertise in working independently on a research subject.

More about research at ID, TU/e: http://wiki.id.tue.nl/CSC/ResearchAtID

More examples of research projects at ID, TU/e: http://wiki.id.tue.nl/CSC/ProjectsAtID

More about the agreement between TU/e and CSC: http://wiki.id.tue.nl/CSC/TUE-Agreement (in Chinese).

More about the requirements in applying the Scholarship from China Scholarship Council (CSC) for Chinese PhD candidates: http://wiki.id.tue.nl/CSC/RequirementsCSC (in Chinese)

If you are interested in applying, please first address your interest to dr. Jun Hu: j.hu@tue.nl , and later prepare the following documents:

  1. Curriculum Vitae
  2. Research plan according to one of the aforementioned topics (no more than 4-pages of A4 in English, Including: Background, Objectives and Research questions, Methodology, Planning, Expected results, Feasibility, Future Plan after your PhD, and References).
  3. Motivation letter (no more than 1-page A4).
  4. Copy of Master Degree (if available, or a letter from your university to prove that you are expected to graduate in due time).
  5. Letter of recommendation from your supervisor at the home university.
  6. Any indication of your English level (IELTS 6.5 or TOEFL 95, or equivalent) according to the requirements from CSC. See http://wiki.id.tue.nl/CSC/RequirementsCSC (in Chinese)

  7. If you have a design or art background, portfolio of your design or art work.

Please notice the deadlines: February 28, 2015 at TU/e; if admitted by TU/e, April 5, 2015 at CSC. For a better support for your application, we would encourage you to apply as early as possible.

JunHu: csc (last edited 2018-09-12 18:12:45 by JunHu)