
Creative Programming: OOP 1

Creative Programming

Object Orientation

Creative Programming: OOP 2

Overview of this lecture
• A historical note
• Thinking Object Oriented:

– What is Object-Oriented Programming?
– Key Elements

• Example: the investment manager
• Coding of Key Elements:

– Classes
– Methods and Messages
– Inheritance

• Common Design Flaws

Creative Programming: OOP 3

A historical note

• Smalltalk: first object-oriented language
• Originated within XEROX Parc

– Very important non-academic research center
• Developed by Alan Kay, Adele Goldberg,

Dan Ingalls

Creative Programming: OOP 4

What is Object-Oriented
Programming?

• OOP is a revolutionary idea, totally unlike
anything that has come before in programming

• OOP is an evolutionary step, following naturally
on the heels of earlier programming abstractions

• It shows resonant similarity to techniques of
thinking about problems in other domains (e.g.
architecture)

• It is a new programming paradigm

Creative Programming: OOP 5

A Paradigm

• A set of theories, standards, and methods
that together represent a way of
organising knowledge – that is, a way of
viewing the world.

Creative Programming: OOP 6

What is Object-Oriented
Programming?

• OOP is based on the principle of recursive design
1. Everything is an object
2. Objects perform computation by making requests of each

other through the medium of messages
3. Every object has it’s own memory, which consists of other

objects
4. Every object is an instance of a class. A class groups similar

objects
5. The class is the repository for behaviour associated with an

object
6. Classes are organised into tree structures, called inheritance

hierarchies.

Creative Programming: OOP 7

Recursive design
• The structure of the part mirrors the structure of the larger unit

Creative Programming: OOP 8

Elements of OOP

1. Everything is an object

Actions in OOP are performed by agents,
called instances or objects

Creative Programming: OOP 9

Elements of OOP-Messages

2. Objects perform computation by making
requests of each other through the
medium of messages

Actions in OOP are produced in response to
requests for actions, called messages. An
instance may accept a message and in return
it will perform an action and return a result.

Creative Programming: OOP 10

What vs How

• What: messages
– Specify what behaviour objects are to perform
– Details of how are left up to the receiver
– State information only accessed via messages

• How: Methods
– Specify how operation is to be performed
– Must have access to data
– Need detailed knowledge of data
– Can manipulate data directly

Creative Programming: OOP 11

Message

• Sent to receiver object: receiver-object message
• A message may include parameters necessary

for performing the action
• Message-send always return a result (an object)
• Only way to communicate with an object and

have it perform actions

aRectangle

Is an object

Another object

Area?

aRectangle.area

Creative Programming: OOP 12

Method

• Defines how to respond to a message
• Selected via method lookup technique
• Has name that is the same as message

name
• Is a sequence of executable statements
• Returns an object as its result of execution

Float Rectangle area
Return side1*side2

Creative Programming: OOP 13

Information hiding

• As a user of a service being provided by an
object, I need only to know the set of messages
that the object will accept. I need not to have any
idea of how the methods are performed.

• Having accepted a message, an object is
responsible for carrying it out.

Creative Programming: OOP 14

Object Encapsulation

• Objects encapsulate state as a collection of
instance variables

• Objects encapsulate behaviour via methods
invoked by messages

External perspective vs Internal perspective
What vs How
Message vs Method

Creative Programming: OOP 15

Object encapsulation ctd.
• Technique for

– Creating for objects with encapsulated state/behaviour
– Hiding implementation details
– Protecting the state information of objects

• Puts objects in control
• Facilitates modularity, code reuse and maintenance

Rectangle
side1:Integer
side2:Integer
circumference

area
moveTo:aPoint

Creative Programming: OOP 16

Elements of OOP-Receivers

• Messages differ from traditional functions:
– In a message there is a designated receiver

that accepts the message
– The interpretation of the message may be

different, depending upon the receiver

Creative Programming: OOP 17

Example
• Vars:

Florist Flo;
Secretary Beth;
Dentist Ken;

• Code:
Flo.sendFlowersTo(myFriend);
Beth.sendFlowersTo(myFriend);
Ken.sendFlowersTo(myFriend); (will probably not work)

• Although different objects might receive the same
message, the behaviour they perform will likely be
different

Creative Programming: OOP 18

Elements of OOP-Recursive Design

3. Every object has it’s own memory, which
consists of other objects

Each object is like a miniature computer
itself – a specialised processor performing
a specific task

“Ask not what you can do to your datastructures,
but what your datastructures can do for you”

Creative Programming: OOP 19

Polymorphism

• Same message may be sent to different
objects

Speak Speak

WOEF

KWAAK

Creative Programming: OOP 20

Elements of OOP - Classes
4. Every object is an instance of a class. A class groups similar objects
5. The class is the repository for behaviour associated with an object

• The behaviour I expect from Flo is determined from a
general idea I have of the behaviour of florists

• We say Flo is an instance of the class Florist
• Behaviour is associated with classes, not with individual

instances. All objects of a given class use the same
method in response to similar messages

Creative Programming: OOP 21

Instance
• Instance: a particular occurrence of an object defined by a

class
• Each instance has its own value for each instance variable
• All instances of a class share the same methods

Stock
companyName
numberofShares
currentPrice
calculateValue
calculateGainorLoss
calculateTaxLiability

myIBMStock

yourAppleStock

IBM inc
3000
$ 78.00

Apple Inc.
1000
$ 42.00

Creative Programming: OOP 22

Hierarchies of categories

• But there is more I know about Flo then just that
he is a Florist. He is a ShopKeeper, and a
Human, and a Mammal, and so on.

• At each level of information a certain amount of
info is recorded. That info is applicable to all
lower (more specialised) levels.

Creative Programming: OOP 23

Class Hierarchies

Living thing

Animal Plant

MammalReptile

Human Being Cat Dog

Dentist Florist Secretary

Platypus

Creative Programming: OOP 24

Elements of OOP - Inheritance
6. Classes are organised into tree structures, called inheritance

trees

• Information (data and/or behaviour) I associate with one level
in a class hierarchy is automatically applicable to lower level
of the hierarchy

• Class hierarchies thus allow sharing of definition

• Each class refines/specializes the definition of its ancestor

Creative Programming: OOP 25

Elements of OOP - Overriding

• Subclasses can alter or override information
inherited from parent classes:
– All mammals give birth to live young
– A platypus is an egg-laying mammal

Creative Programming: OOP 26

Superclass/subclass
• Classes form a hierarchy
• The focus point determines the relationship
• Superclass is the parent and subclass is a child
• Subclasses specialize their superclass

Living thing

Animal Plant

MammalReptile Fish Tree Flower

Creative Programming: OOP 27

Concrete vs. Abstract Classes

• Abstract Class
– Holds on to common

characteristics shared by other
classes

– Not expected to have instances
• Concrete Class

– Contains complete
characterisation of actual
objects

– Expected to have instances

Living thing

Animal

Reptile Mammal

Creative Programming: OOP 28

Example:The Investment Manager

• Many activities for each investment, e.g.,
– Calculate current value
– Calculate tax liability

• Nature of activity depends on:
– Kind of investment
– How long investment has been held

• What has happened during a particular period

Investment
Manager Rental

Property

Stocks Home

Bonds

Creative Programming: OOP 29

The OO Solution
• Have a unique class description for each kind of investment
• Each investment object will have its own instance variables
• Each investment has a calculateTaxLiability method

Bond
issuerName
interestRate

purchasePrice
calculateValue

calculateGainorLoss
calculateTaxLiability

Rental Property
location

rentalRate
purchasePrice
calculateValue

calculateGainorLoss
calculateTaxLiability

Stock
companyName

numberofShares
currentPrice

calculateValue
calculateGainorLoss
calculateTaxLiability

Creative Programming: OOP 30

The OO Solution, ctd.
Suppose I have a list of current investments: investmentList

myList
Code to generate a tax report might look like:

(message) myList.calculateAllTaxes

(method) investmentList
for loop: eachInvestment.calculateTaxLiability

Creative Programming: OOP 31

The OO Solution, ctd.

• Suppose we wish to extend with Mutual
funds and Commercial Land

• What do you do?

• Create new class description for each new
type of investment

Creative Programming: OOP 32

The OO Solution: a hierarchy

Investment

Stock Bond

Securities
Investment

Raw LandCommercial
Property

Real Estate
Investment

Mutual Fund

A method like calculateTaxLiability will move up in the hierarchy to the investment
Class and will be overridden in the subclasses.

Creative Programming: OOP 33

Coding of Key Elements: Classes

• Start with generic class definition
• Elucidate with examples:

– We start with defining Cards in a card game
– Burito recipe example explained in book
– Shape example for inheritance

Creative Programming: OOP 34

Generic class definition
Class ClassName {

//properties
int property1;
float property2;

//constructors
ClassName(){}
ClassName(int prop1,float prop2){

property1 = prop1;
property2 = prop2;

}

Creative Programming: OOP 35

Generic class definition,ctd
//methods
void setProperty1(int prop1){

property1 = prop1;
}
int getProperty1(){

return property1;
}
…

} //class ends

Creative Programming: OOP 36

Card Example
Class Card {

//static values for colors and suits
final public int red = 0;
final public int black = 1;
final public int spade = 0;
final public int heart = 1;
final public int diamond = 2;
final public int club = 3;

// data fields
private boolean faceup
private int r;
private int s;

Creative Programming: OOP 37

Public and Private view

• Public view: those features (data or behaviour)
that other objects can see and use.

• Private view: those features (data or behaviour)
that are only used within the object.

• In java or processing keywords public and
private are applied individually to every instance
value or method

• If you add the keyword final, it becomes a
constant.

Creative Programming: OOP 38

Card example, ctd.
• Constructors tie together creation and initialisation, method with

same name as class name.

// constructor
Card(int sv,int rv) {s=sv; r=rv; faceup=false;}
// access attributes of card
public int getSuit(){return s;}
public int getRank(){return r;}

public int getColor(){
if(suit()==heart||suit++diamond)

return red;
return black;}

public boolean faceUp(){return faceup;}

Creative Programming: OOP 39

Card example, ctd.

• Classes can have multiple constructors

// constructor
Card(int sv,int rv) {s=sv; r=rv; faceup=false;}
// an alternative
Card() {s=0;r=3;faceup=false;}

• Depends on the number and type of parameters

Creative Programming: OOP 40

Card example: instance creation

• How do I create an object?
Card aCard = new Card(0,4);
• The variable aCard is assigned a

reference to the newly created Card object

Card standardCard = new Card();
• Uses the second constructor

Creative Programming: OOP 41

Card example: “this”
private int r;
private int s;

Card(int sv,int rv) {this.sv=sv; this.rv=rv; faceup=false;}

• “this” refers to the class itself

Creative Programming: OOP 42

Card example: methods

• After constructor(s) list of methods follow

public int getSuit(){return s;}
public int getRank(){return r;}

public int getColor(){
if(suit()==heart||suit++diamond)

return red;
return black;}

Creative Programming: OOP 43

Card example: methods, ctd

• Suppose we have magic cards

public void setSuit(int sv){this.sv=sv;}
public void setRank(int rv){this.rv=rv;}

Why void?

Creative Programming: OOP 44

The Shape example: inheritance

• A note on inheritance in Java:
– A single root class: Object
– All classes inherit from some class, default

Object

Creative Programming: OOP 45

Shape example, ctd.
class Shape {

//class properties
int x;
int y;
int w;
int h;
//constructors
Shape(){}
Shape(int x, int y, int w, int h){

this.x=x;
this.y=y;
this.w=w;
this.h=h;

}
}

Creative Programming: OOP 46

Shape example, ctd

class Polygon extends Shape{
int pts;
//constructor
Polygon(int x, int y, int w, int h, int pts){

super(x, y, w, h);
this.pts = pts;

}
// method to draw poly, see book

Creative Programming: OOP 47

Shape example, ctd.

• Keyword extends to create subclass
• Keyword super refers to superclass

Creative Programming: OOP 48

Shape example, ctd.
• Create a program
• Add following setyp function along with the two classes

void setup(){
size(400,400);
background(50);
smooth();
Polygon p = new Polygon(0, 0, 175, 175, 8);
translate(width/2, height/2);
p.create();

}

Creative Programming: OOP 49

Common Design Flaws
• Direct modification: classes that make direct

modification of data values in other classes are a
direct violation of encapsulation.

• Too much responsibility: Classes with too
much responsibility are difficult to understand
and use. Responsibility should be split into
smaller meaningful packages.

• No responsibility: Classes with no
responsibility serve no purpose. Often arise
when designers equate physical existence with
logical design existence. “Money is no object”.

Creative Programming: OOP 50

Common Design Flaws, ctd.

• Classes with unused responsibility: Usually
the results of designing software components
without thinking about how they will be used.

• Misleading names: Names should be short and
unambiguously indicate what the responsibilities
of the class involve.

• Inappropriate inheritance: Occurs when
subclassing is used in situations where the
concepts do not share an “is-a” relationship.

	Creative Programming
	Overview of this lecture
	A historical note
	What is Object-Oriented Programming?
	A Paradigm
	What is Object-Oriented Programming?
	Recursive design
	Elements of OOP
	Elements of OOP-Messages
	What vs How
	Message
	Method
	Information hiding
	Object Encapsulation
	Object encapsulation ctd.
	Elements of OOP-Receivers
	Example
	Elements of OOP-Recursive Design
	Polymorphism
	Elements of OOP - Classes
	Instance
	Hierarchies of categories
	Class Hierarchies
	Elements of OOP - Inheritance
	Elements of OOP - Overriding
	Superclass/subclass
	Concrete vs. Abstract Classes
	Example:The Investment Manager
	The OO Solution
	The OO Solution, ctd.
	The OO Solution, ctd.
	The OO Solution: a hierarchy
	Coding of Key Elements: Classes
	Generic class definition
	Generic class definition,ctd
	Card Example
	Public and Private view
	Card example, ctd.
	Card example, ctd.
	Card example: instance creation
	Card example: “this”
	Card example: methods
	Card example: methods, ctd
	The Shape example: inheritance
	Shape example, ctd.
	Shape example, ctd
	Shape example, ctd.
	Shape example, ctd.
	Common Design Flaws
	Common Design Flaws, ctd.

