
Hello You

The Middle Path

/ name of department PAGE 115-11-2012

Processing: After the course

• Use the processing environment and:

• - create programs … that run

• - … that draw pictures

• - … that display animations

• - … that display interactive animations

• - … that animate interactive objects

• last but not least: make all of these work together as

you like … great freedom to create

/ name of department PAGE 215-11-2012

Assignors

/ name of department PAGE 315-11-2012

After this 1st lesson: what can you do

• Start processing.

• run your first program in processing

• write programs that create various static objects i.e.

“pictures”

• change these programs to change the pictures.

• Understand how the pictures change when you

change the program.

• Have a first idea about creating interactive objects.

/ name of department PAGE 415-11-2012

After 1st lesson:

What should you understand ?

• Why processing (and programming in general) is

interesting and important for you as a designer

• What syntax is ?

• What expressions are?

• What (basic) types and variables are ?

• What semantics is ? How to look it up?

• How to think about programs. (a little)

/ name of department PAGE 515-11-2012

Downloading processing…

Go to wiki created for the assignment:

• http://wiki.id.tue.nl/creapro

• go there and click on:

• Prepare your computer for the assignment

• then click on the link:

• Download processing. (a stable release)

• Create a directory "Programs" on the C: disk, in the root. If
"C:\Programs" exists already, skip this step.

• Extract the entire directory to C:\Programs (note, not
"C:\Program Files"). if you are reinstalling Processing, remove
the entire processing directory first.

http://wiki.id.tue.nl/creapro
http://wiki.id.tue.nl/creapro
http://wiki.id.tue.nl/creapro/SoftwareEnvironment
http://processing.org/download/processing-0135.zip

/ name of department PAGE 615-11-2012

Before you start …

Experience some Examples

• Open menu:

• File | Examples | 3D and OpenGL | Form |

• run: CubicGrid

• Open menu:

• File|Examples|Topics|Interaction|

• run: follow 1

• run: follow 2

• run: follow 3

/ name of department PAGE 715-11-2012

Design Process: integrate various skills

•

sensing

perceiving

doing

validating

quality

analysing&

abstracting

envisioning

transforming

Integrating

realising

/ name of department PAGE 815-11-2012

A little experiment …

/ name of department PAGE 915-11-2012

Need to integrate Left & Right brain

/ name of department PAGE 1015-11-2012

Left versus Right

• abstract objects that are represented in language are

easy to change and to duplicate but are not

immediately graspable or visible, and cannot be

placed in the relevant context

• concrete objects that are created in matter can be

inspected and manipulated easier, but are more

difficult to change and to duplicate.

/ name of department PAGE 1115-11-2012

We want best of both worlds

• define and create objects through language

• grasp and inspect objects through senses.

• Processing can execute abstract instructions in a

computer language and translate these into

something that you can experience through the

senses.

/ name of department PAGE 1215-11-2012

Programming languages : How does it work?

• processing is an imperative language: that means
you use the language to give commands

• The computer creates the application by executing
the commands one after the other … it is a
sequential language

• compare with written music : parallel (orchestra)

• can also be done in programs …very difficult.

/ name of department PAGE 1315-11-2012

Lets Start Programming…

• Click on the processing icon …

• Window opens with: run, stop and

new,open,save,export. export makes applets.

/ name of department PAGE 1415-11-2012

First program “Hello you”

• print(“hello you”);

• print(“hello ”);

• print(“you”);

• println(“commands are separated by semicolons”);

• print(5*3);

• print(“We count”+ 2+1+5+10 + “characters”);

• print(“We count”+ (2+1+5+10) + “characters”);

/ name of department PAGE 1515-11-2012

Correctness : 3 Levels

• Syntax (language form) : wellformed grammatical
expressions: orders of brackets, semicolons,
operators, letters and numbers.

• Types (kinds of things) : distinghuish apples from
oranges

• Semantics (meaning) : does the program do what
you want ?

/ name of department PAGE 1615-11-2012

Syntax : wellformed or not ?

Try some examples …

• print(“hhhh ggg”);

• print(“a”) ; print(“b”) ;

• print(8); {print(8) ; } ; {{{print(8); }}} ;

• print(“hello you)” ;

• // this is just a comment …..

• print(“ jjjhhh) ”))  syntax error: semi expected found)

•

• print(“a”) print(“b”)  syntax error: semicolon missing …

• commands can contain expressions ….

/ name of department PAGE 1715-11-2012

Expressions can be nested …

• 3*4

• sin(3*4)

• sin(3* tan(5) / exp(sin(cos(0.45454))))

• “abcd”+”efgh”

• “abcd” + (“ef” + “gh”)

/ name of department PAGE 1815-11-2012

Types

• String “hhhheeeee” “aaa”+ “nnbn99 bnb”

• int 8 9* 97978787 1-9988989

• float 2333.5555

• sin(-3 * 5677.455)

• 3.4e+38

• basic types are: String, float,int, boolean, char, byte,

• (to be continued … can do)

/ name of department PAGE 1915-11-2012

Variables

• A variable is a named location where a certain type of value can be stored

• declare; initialize, use, scope.

• String anExample;

• anExample = “fghjkl”;

• anExample = anExample + anExample;

• int multiplier = 5;

• multiplier = multiplier + 4;

• float pi = 3.1415926535897932;

• print(multiplier * pi) ;

/ name of department PAGE 2015-11-2012

Variable 2

• int multiplier = 5;

• multiplier = multiplier + 4;

• float pi = 3.1415926535897932;

• print(multiplier * pi) ;

/ name of department PAGE 2115-11-2012

variables

• A variable is a named location where a certain type
of value can be stored

• declare; initialize, use, scope.

• String anExample;

• anExample = “fghjkl”;

• anExample = anExample + anExample;

/ name of department PAGE 2215-11-2012

SEMANTICS

• The meaning of the command; this may depend on type.

• int myAge;

• myAge = 8;

• print(myAge * 8);

• print(“ 8 + 8 “);

• print(“I count”+ 1+1+5+10 + “characters”);

• print(myAge+ (1+1+5+10));

• (to be continued)

/ name of department PAGE 2315-11-2012

How to think about commands:

• setting up a picture, or later a stage, using predefined
primitives

• first start with a static picture:

• create empty picture with command “size”:

• size(200,200);

• Next: specify what you put where:

• you can use various standard primitives with parameters:

• point(20,45)

• line(0,0,100,150)

/ name of department PAGE 2415-11-2012

Example …

• go to menu:

• Example|Basics|Form|

• run: PointsLines

• what is semantics (meaning)

• of : stroke(153) ?

• : background(0) ?

/ name of department PAGE 2515-11-2012

Semantics

• To find the meaning look for the (informal)

specifications ..

• doubleclick on “stroke” to find out …

• choose : find in reference

• doubleclick on “background” to find out …

• these commands specify drawing parameters

/ name of department PAGE 2615-11-2012

Specify drawing parameters …

• stroke(255) 255 = white 0 = black in between are
shade of gray ..

• background(200,23,130) ; (e.g. you can also use
color)

• nostroke() …etc various primitives

• C:\Programs\processing-0135\reference\index.html

/ name of department PAGE 2715-11-2012

Also two dimensional shapes are possible …

• rect(20,20,60,120);

• ellipse(50,50,30,99);

• Example|Basics|Form|

• run: ShapePrimitives

/ name of department PAGE 2815-11-2012

Interactive drawings …

• create a stage with :

• void setup() {

• size(200, 200);

• }

• the you can draw … continuously …with the draw

command ..

• For example …

/ name of department PAGE 2915-11-2012

Interactive drawings …

• void setup() {

• size(200, 200);

• smooth(); // makes forms smoother

• strokeWeight(2); //how thick lines are

• stroke(255); //color of lines (white)

• }

• void draw() {

• background(mouseX,mouseY, 80); // background color

• line(200, 0, mouseX, mouseY);

• line(mouseX,mouseY, 0, 200);

• }

/ name of department PAGE 3015-11-2012

Final remark : Style …

•

• proper indentation

• comprehensible comments

• (using autoformat in Tools menu?)

• balanced pictures …

• beautiful movements …

