
Creative Programming

Object Orientation

Dept. of Industrial Design PAGE 2

Overview of this lecture

Thinking Object Oriented:
• What is Object-Oriented Programming?
• Key Elements

• Example: Car
• Coding of Key Elements:

• Classes
• Methods and Messages
• Inheritance

• Common Design Flaws

Dept. of Industrial Design PAGE 3

What is Object-Oriented Programming?

• OOP is a revolutionary extension of programming
• OOP extends earlier programming abstractions
• It shows similarity to techniques of thinking about

problems in other domains (e.g. Architecture) (a way of
looking at situations .. to simplify dealing with those situations e.g.
organizing information)

• It is the leading programming paradigm
• A paradigm is a set of theories, standards, and methods that together

represent a way of organising knowledge – that is, an organised way
of looking at and handling certain types of problems..

Dept. of Industrial Design PAGE 4

 Basic ideas

• Program consist of many “things”. (objects)
• There are different kinds of “things”
• Objects are created as instances of classes.
• Objects can have an internal state and components.
• Objects exchange messages.
• If object A sends message to B then B does something

and then returns a result to A.
• Results can be int , float or string or they can be an

object themselves or there is no result. (void).
• There is some main object with a loop that starts

everything off.

Dept. of Industrial Design PAGE 5

 Program : A world of objects

Dept. of Industrial Design PAGE 6

 Active object A sends a message ..

 A

Dept. of Industrial Design PAGE 7

 Receiver B is activated …

 B

Dept. of Industrial Design PAGE 8

 When active B can send a message …

Dept. of Industrial Design PAGE 9

 B gets back result of message …

Dept. of Industrial Design PAGE 10

 And eventually returns a result to A

Dept. of Industrial Design PAGE 11

 Object A, now active again …may send
new message …

Dept. of Industrial Design PAGE 12

 All about objects and messages

• OOP is based on the principle of recursive
design

– Every thing is an object
– Objects perform computation by making

requests of each other through the
medium of messages

– Every object has it’s own memory, which
can consist of other objects

Dept. of Industrial Design PAGE 13

 Objects: organised through Classes

• Every object is an instance of a class. A class
groups similar objects

• The class is the repository for behaviour
associated with an object

• Classes are organised into tree structures,
called inheritance hierarchies.

Dept. of Industrial Design PAGE 14

Elements of OOP

1. Every thing is an object

Actions in OOP are performed by active objects.

(…. similar objects are found in the same class)

Dept. of Industrial Design PAGE 15

Elements of OOP-Messages

2. Objects perform computation by making requests of
each other through the medium of messages

Actions in OOP are produced in response to requests for actions,
called messages. An instance may accept a message and in
return it will perform an action and return a result.

Dept. of Industrial Design PAGE 16

What vs How

• What: messages
• Specify what behaviour objects are to perform
• Details of how are left up to the receiver
• State information only accessed via messages

• How: Methods (found in objects that handle message)
• Specify how operation is to be performed
• Must have access to data
• Need detailed knowledge of data
• Can manipulate data directly

Dept. of Industrial Design PAGE 17

Message

• Sent to receiver object: receiver-object.message
• A message may include parameters necessary for performing

the action
• Message-send always return a result (an object)
• Only way to communicate with an object and have it perform

actions

Rectangle6

Is an object
in a class

busyobject

Area?

Rectangle6.area

Dept. of Industrial Design PAGE 18

Method

• Defines how to respond to a message
• Depends on class of receiver …
• Has name that is the same as message name
• Is a sequence of executable statements
• Returns a result of execution

Float area
Return side1*side2

Dept. of Industrial Design PAGE 19

Information hiding (behind curtain)

• As a user of a service being provided by an object, I
need only to know the set of messages that the
object will accept. I need not to have any idea of how
the methods are performed.

• Having accepted a message, an object is responsible
for carrying it out.

External perspective Internal perspective
What How
Message Method

Dept. of Industrial Design PAGE 20

Object Encapsulation

• Objects encapsulate state as a collection of instance
variables

• Objects encapsulate behaviour via methods invoked
by messages

Circumference
Area
moveTo:aPoint

side1:Integer
side2:Integer

Rectangle

Dept. of Industrial Design PAGE 21

Object encapsulation ctd.

• Technique for
• Creating for objects with encapsulated state/behaviour
• Hiding implementation details
• Protecting the state information of objects

• Puts objects in control
• Facilitates modularity, code reuse and maintenance

Circumference
Area
moveTo:aPoint

side1:Integer
side2:Integer

Rectangle

Dept. of Industrial Design PAGE 22

Elements of OOP-Receivers

• Messages differ from traditional functions:
• In a message there is a designated receiver that accepts the

message
• The interpretation of the message may be different,

depending upon the receiver

• objects:
Florist Flo;
Secretary Beth;
Dentist Ken;

• messages:
Flo.sendFlowersTo(myFriend);
Beth.sendFlowersTo(myFriend);
Ken.sendFlowersTo(myFriend); (will probably not work)

• Although different objects might receive the same message, the behaviour they
perform will likely be different

Dept. of Industrial Design PAGE 23

Elements of OOP-Recursive Design

3. Every object has it’s own memory, which consists of
variables and other objects

Each object is like a miniature computer itself – a
specialised processor performing a specific task

“Ask not what you can do to your datastructures, but what your
datastructures can do for you”

Dept. of Industrial Design PAGE 24

Elements of OOP - Classes

4. Every object is an instance of a class. A class groups similar
objects

5. The class is the repository for behaviour associated with an object

• The behaviour I expect from Flo is determined from a
general idea I have of the behaviour of florists

• We say Flo is an instance of the class Florist
• Behaviour is associated with classes, not with

individual instances. All objects of a given class use
the same method in response to similar messages

Dept. of Industrial Design

 Example : class Car

• class Car { // Cars can drive and can be drawn on screen
• color c;
• int carlength ;
• float xpos;
• float ypos;
• float speed;
• int tirewidth ;

• Car(){ //this is a constructor for a default Car
• c = color(223,34,45);
• xpos = 23;
• ypos = 34;
• carlength = 120;
• tirewidth = 12;
• }

Dept. of Industrial Design PAGE 26

Card example: instance creation

• How do I create an object with a constructor?
Car myfirstCar = new Car();
• The variable aCar is assigned a reference to the

newly created Car object

• Uses the first constructor, there may be more
compelx constructors ..

Dept. of Industrial Design

• Car(color desiredColor){ // constructor for coloured car
• c = desiredColor
• xpos = 23;
• ypos = 34;
• Carlength = 120
• tirewidth = 12;
• }

• void Drawcar(){ // method to draw a car on screen
• ellipse(xpos,ypos, carlength,10);
• rect(xpos, ypos-10, 10,-tirewidth);
• rect(xpos,ypos+10, 10, tirewidth);
• }

Dept. of Industrial Design PAGE 28

Coding of Key Elements: Classes

• Elucidate with examples:
• We start with defining Cars in a race game
• Extend Car example to explain inheritance

• generic class definition

Dept. of Industrial Design PAGE 29

Superclass/subclass

• Classes form a hierarchy
• Superclass is the parent and subclass is a child
• Subclasses “extend” (i.e. Specialize) their superclass

Living thing

Animal Plant

MammalReptile Fish Tree Flower

Dept. of Industrial Design PAGE 30

Elements of OOP - Overriding

• Subclasses can alter or override information inherited from
parent classes:
• All mammals give birth to living young
• All fish have gills

Dept. of Industrial Design PAGE 31

Superclass/subclass

• Classes form a hierarchy
• Superclass is the parent and subclass is a child
• Subclasses “extend” (i.e. Specialize) their superclass

 Car

LuxCar

MasseratiFerrari RR

Tractor

MasseyCat

Dept. of Industrial Design

• void drive() // method for Car to drive in x
• // direction
• { xpos = xpos + 3;}

• LuxCar extends Car() // Luxcars are cars with
• // somewhat better properties

• void drive() { xpos = xpos + 4;}

Dept. of Industrial Design PAGE 33

Generic class definition

class ClassName {
//properties or components
int property1;
float property2;

 rectangle component3;

//constructors
ClassName(){}
ClassName(int prop1,float prop2){

property1 = prop1;
property2 = prop2;

}

Dept. of Industrial Design PAGE 34

Generic class definition,ctd

//methods
void setProperty1(int prop1){

property1 = prop1;
}
int getProperty1(){

return property1;
}
…

other ... specific methods

} //class ends

Dept. of Industrial Design PAGE 35

 Inheritance in Java

• A note on inheritance in Java:
• A single root class: Object
• All classes inherit from some class, default Object

Dept. of Industrial Design PAGE 36

Public and Private view

• Public view: those features (data or behaviour) that other
objects can see and use.

• Private view: those features (data or behaviour) that are only
used within the object.

• In java or processing keywords public and private are applied
individually to every component or method

Dept. of Industrial Design PAGE 37

Common Design Flaws

• Direct modification: classes that make direct modification of
data values in other classes are a direct violation of
encapsulation.

• Too much responsibility: Classes with too much responsibility
are difficult to understand and use. Responsibility should be
split into smaller meaningful packages.

• No responsibility: Classes with no responsibility serve no
purpose. Often arise when designers equate physical
existence with logical design existence. “Money is no object”.

• Classes with unused responsibility: Usually the results of
designing software components without thinking about how
they will be used.

• Misleading names: Names should be short and unambiguously
indicate what the responsibilities of the class involve.

• Inappropriate inheritance: Occurs when subclassing is used in
situations where the concepts do not share an “is-a”
relationship.

