Introducing Electronics

Chapter 6 \& 7
Kirchoff's Law
Theorems of Norton / Thevenin

TU/e
universiteit
eindhoven

Why Kirchoff's Law

- Ohm's law can not deal with complex electrical circuits.
- Kirchoff's current and voltage laws can help us analyzing complex circuits consisting of resistors, capacitors and inductors.
- Is Kirchoff's law difficult? Logic thinking \& Basic calculation

Kirchoff's Current Law - KCL

- KCL - The sum of currents entering a node is equal to the sum of currents leaving a node.
- Current cannot accumulate in a node: what goes in must come out.

Examples - Canals, Marbles in tubes, etc.

$$
I_{\text {in } 1}+I_{\text {in } 2}+\ldots+I_{\text {inn }}=I_{\text {out } 1}+I_{\text {out } 2}+\ldots+I_{\text {outm }}
$$

$$
\begin{equation*}
\sum I_{\text {incoming }}-\sum I_{\text {outgoing }}=0 . \tag{6.1}
\end{equation*}
$$

TU/e

Example - Applying KCL to a Circuit

How to find all the currents and voltages in the circuit below using KCL?

TU/e

Example - Applying KCL to a Circuit

Four nodes; reference node d; b \& c are special nodes for analysis

TU/e

Example - Applying KCL to a Circuit

Mark the currents with direction.

Choosing the wrong direction is not a big issue.

TU/e

Example - Applying KCL to a Circuit

$$
K C L, \text { node b }
$$

$I_{R 1}=I_{R 2}+I_{R 3}$

$I_{R_{1}}=\frac{V_{a}-V_{b}}{R_{1}}=\frac{12-V_{b}}{1000}$
$I_{R_{2}}=\frac{V_{b}-V_{0}}{R_{2}}=\frac{V b-0}{1000}$
$I_{R_{3}}=\frac{V_{b}-V_{c}}{R_{3}}=\frac{V_{b}-V_{c}}{6000}$

$$
I_{R_{1}}-I_{R_{2}}-I_{R_{3}}=0 \rightarrow \frac{3}{250}-\frac{13}{6000} V_{b}+\frac{1}{6000} V_{c}=0
$$

$$
\begin{equation*}
13 V_{b}-V_{c}=72 \tag{1}
\end{equation*}
$$

TU/e technische
universiteit eindhoven

Example - Applying KCL to a Circuit

KCL, node c
$I_{R 5}=I_{R 3}+I_{R 4}$ Ohm's Law
$I_{R_{3}}=\frac{V_{b}-V_{c}}{R_{3}}=\frac{V b-V_{c}}{6000}$
$I_{R_{4}}=\frac{12-V_{c}}{R_{4}}=\frac{12-V_{c}}{2000}$
$I_{R_{5}}=\frac{V_{c}-V_{d}}{R_{5}}=\frac{V_{c}-0}{4000}$
$I_{R_{3}}+I_{R_{4}}-I_{R_{5}}=0 \rightarrow \frac{3}{500}-\frac{1}{6000} V_{b}+\frac{11}{12000} V_{c}=0$

$$
\begin{equation*}
-2 \mathrm{~V}_{\mathrm{b}}+11 \mathrm{~V}_{\mathrm{c}}=72 \tag{2}
\end{equation*}
$$

Example - Applying KCL to a Circuit

$$
\begin{align*}
& 13 V_{b}-V_{c}=72 \tag{1}\\
& -2 V_{b}+11 V_{c}=72 \tag{2}
\end{align*}
$$

$$
\xrightarrow{\Perp} \quad \begin{aligned}
& V_{b}=6.1277 \mathrm{~V} \\
& V_{c}=7.6596 \mathrm{~V}
\end{aligned} \Perp \text { All currents }
$$

$$
V_{b}<V_{c} \quad I_{b c}<0
$$

TU/e

Kirchoff's Voltage Law - KVL

Closed loop - a closed path which begins and ends in the same node.

TU/e
eindhoven

Kirchoff's Voltage Law - KVL

- KVL - The sum of the branch voltage drops around any closed loop is 0 .
- Examples - Mountain excursion.

$$
\begin{equation*}
\sum V_{\text {drops in a closed loop }}=0 \tag{6.2}
\end{equation*}
$$

All drops should face the same direction.

TU/e

Example - Applying KVL to a Circuit

- Both KCL and KVL should give the same result to the same circuit.

How to find all the currents and voltages in the circuit below using KVL?

TU/e

Example - Applying KVL to a Circuit

Mark the currents in loops.

TU/e

Example - Applying KVL to a Circuit

Loop $\mathbf{I}_{1}: a \rightarrow \mathbf{b} \rightarrow \mathbf{d} \rightarrow \mathbf{a}$

$$
\begin{gathered}
\mathrm{R}_{1}\left(\mathrm{I}_{1}-\mathrm{I}_{3}\right)+\mathrm{R}_{2}\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)-\mathrm{V}_{\text {battery }}=0 \\
1000\left(I_{1}-I_{3}\right)+1000\left(I_{1}+I_{2}\right)-12=0 \rightarrow 12-2000 I_{1}-1000 I_{2}+1000 I_{3}=0
\end{gathered}
$$

universiteit
eindhoven

Example - Applying KVL to a Circuit

Loop $\mathbf{I}_{3}: a \rightarrow \mathbf{c} \rightarrow \mathbf{b} \rightarrow \mathbf{a}$

$$
R_{4} I_{3}+R_{3}\left(I_{2}+I_{3}\right)+R_{1}\left(I_{3}-I_{1}\right)=0
$$

$2000 I_{3}+6000\left(I_{2}+I_{3}\right)+1000\left(I_{3}-I_{1}\right)=0 \rightarrow-1000 I_{1}+6000 I_{2}+9000 I_{3}=0$

Example - Applying KVL to a Circuit

Loop $\mathbf{I}_{2}: b \rightarrow \mathbf{d} \rightarrow \mathbf{c} \rightarrow \mathbf{b}$
Mistake in the reader

$$
R_{5} I_{2}+R_{3}\left(I_{2}+I_{3}\right)+R_{2}\left(I_{1}+I_{2}\right)=0
$$

$$
4000 I 2+6000\left(I_{2}+I_{3}\right)+1000\left(I_{1}+I_{2}\right)=0 \rightarrow 1000 I_{1}+11000 I_{2}+6000 I_{3}=0
$$

TU/e
eindhoven

Example - Applying KVL to a Circuit

$$
\mathrm{I}_{1}=0.008 \mathrm{~A}, \mathrm{I}_{2}=-0.0019 \mathrm{~A}, \mathrm{I}_{3}=0.0022 \mathrm{~A}
$$

Note: the signs in the reader for I_{2} and I_{3} are wrong!!

Norton and Thevenin

Simplify a complex circuit by a much simpler equivalent circuit using either (1) a voltage source with an equivalent resistor (Thevenin)
(2) a current source with an equivalent resistor (Norton)

A complex circuit

Thevenin

Norton

Norton and Thevenin

How to determine $V_{O C}$?

- Remove the load, leaving the load terminals open-circuited.
- Calculate the open-circuit voltage V_{Oc}.

Norton and Thevenin

How to determine $I_{S C}$?

- Replace the load with a short circuit.
- Calculate the short circuit current I_{SC}.

TU/e

Norton and Thevenin

$$
\begin{equation*}
R_{T}=R_{N}=\frac{V_{o c}}{I_{s c}} \tag{7.1}
\end{equation*}
$$

Thevenin and Norton resistances are equal;

The Thevinin voltage is equal to the Norton current times the Norton resistance;

The Norton current is equal to the Thevenin voltage divided by the Thevenin resistance.

Norton and Thevenin

Another way to determine R_{T}, R_{N} ?

A complex circuit
$R_{T}=R_{N}$

- Remove the load
- Zero all independent voltage and current sources (e.g. shortcircuit the voltage source and open-circuit the current source)
- Compute the total resistance between load terminals

