# Creative Electronics 

## Resistance and Resistors

TU/e

## Resistance and Resistors

- Resistance in electrical engineering is a measure of the degree of opposition that current is faced with.
- A resistor is a physical component that "implements" the definition of resistance.
- Weerstand!
- Conductance and conductor


Two symbols for resistors
TU/e technische
universiteit eindhoven

## Relation between Voltage and Current - Ohm's Law

$$
\begin{equation*}
R=\frac{V}{I} \tag{3.1}
\end{equation*}
$$

- $R$ is the resistance of the object, measured in Ohms.
- V is the voltage across the object, measured in volts.
- I is the current through the object, measured in amperes.

TU/e

## Relation between Voltage and Current

Ohm's Law

$$
\begin{equation*}
R=\frac{V}{I} \tag{3.1}
\end{equation*}
$$

Resistance is independent of

- the applied voltage
- the resulting current
- the frequency
- the air humidity
- the pressure

TU/e

## Power Behavior

$$
\begin{equation*}
P=V \cdot I \tag{2.1}
\end{equation*}
$$

| Quantity | Unity | Symbol |
| :--- | :---: | :---: |
| Voltage, potential diff. | Volt (V) | V |
| Current | Ampere (A) | I |
| Power | Watt (W) | P |

Table 2.1: Electrical quantities with their respective unities and symbols.

$$
\begin{equation*}
P_{\text {resistor }}=V_{\text {resistor }} \cdot I_{\text {resistor }} \tag{3.2}
\end{equation*}
$$

The product of the voltage applied to a resistor and the current that flows through it results in a power $P_{\text {resistor }}$

- $\mathrm{P}_{\text {resistor }}$ is dissipated in the resistor.
- The dissipated power is transformed into heat.


## Power Behavior

$$
P=V \cdot I
$$

Ohm's law $\quad R=\frac{V}{I}$

$$
\begin{aligned}
& P=\frac{V^{2}}{R} \\
& P=I^{2} R
\end{aligned}
$$

TU/e

## Using a Resistor

- Don not overload a resistor! Usually the low-power models can handle a power of $1 / 4 \mathrm{~W}$ or $1 / 3 \mathrm{~W}$.
- The resistance values are approximations! They have tolerance ranges, for example $\pm 5 \%$
- Appendix B provides information on color codes that indicate the resistance value and tolerance.
(what if you still cannot decide the resistance by analysing its color? - measure it!)
- You cannot buy a resistor with arbitrary resistance value. Resistors are produced in E-series.
http://www.st-andrews.ac.uk/jcg//Scots_Guide/info/comp/passive/resistor/e12/e12.htm|
- In order to obtain the desired resistance value, you need to combine several resistors.


## Series and Parallel Connections - Series Connection



Example of a series connection
The same current flows through all the resistors.

$$
\begin{equation*}
R_{r e}=\sum_{i=1}^{N} R_{i} . \tag{3.3}
\end{equation*}
$$

$R_{r e}$ is always higher than the largest (single) resistance value;
If one of the single resistance values is much higher than the other two, $R_{r e}$ is almost equal to that value;

The power dissipated in a single resistor is always lower than the power dissipated in $R_{r e}$.

## Series and Parallel Connections - Series Connection

The power dissipated in a single resistor is always lower than the power dissipated in $R_{r e}$.


$$
P=I^{2} R
$$



The same current flows through all the resistors.

$$
\begin{equation*}
R_{r e}=\sum_{i=1}^{N} R_{i} . \tag{3.3}
\end{equation*}
$$

$P_{r e}$ - the same current on the bigger resister $R_{r e}$.
TU/e technische
universiteit eindhoven

## Parallel Connection



Example of a parallel connection

- The voltage over each resistor is equal.
- The current is divided over the resistors.

TU/e
technische
universiteit
universiteit
eindhoven

## Parallel Connection



- The voltage over each resistor is equal.
- The current is divided over the resistors.


$$
\begin{gathered}
I=\sum_{i=1}^{N} I_{i} \\
\frac{V}{R_{r e}}=\sum_{i=1}^{N} \frac{V}{R_{i}}
\end{gathered}
$$

## Parallel Connection

- The voltage over each resistor is equal.
- The current is divided over the resistors.

$$
\begin{aligned}
R_{r e}= & \frac{1}{\sum_{i=1}^{N} \frac{1}{R_{i}}} \\
\frac{1}{R_{r e}} & =\sum_{i=1}^{N} \frac{1}{R_{i}}
\end{aligned}
$$

$R_{r e}$ is always lower than the lowest $R$;
If one of the single resistance values is much lower than the other two, $R_{r e}$ is almost equal to that value;

The power dissipated in a single resistor is always lower than the power dissipated in $R_{r e}$.

## Series and Parallel Connections - Parallel Connection

The power dissipated in a single resistor is always lower than the power dissipated in $R_{r e}$.


$$
P=\frac{V^{2}}{R}
$$



$$
P_{r e} \text { - the same voltage on the smaller resister } R_{r e}
$$

TU/e echnische
universiteit eindhoven

## Applications of Resistors

- Filters
- Switch circuitry
- Integrators
- Amplifiers
- ...
- Voltage divider

TU/e
technische
universiteit
eindhoven

## Voltage Divider

A voltage divider is designed to create an output voltage which is proportional to the input voltage.


Example of a voltage divider
TU/e
technische
universiteit
eindhoven

## Voltage Divider

A voltage divider is designed to create an output voltage which is proportional to the input voltage.


Example of a voltage divider
TU/e

## Potentiometers



Schematic symbol of a potmeter

- Adjustable resistors - Potmeters


## Applications of Potmeters

- An adjustable resistance value for filtering (next chapter)
- Adjustable voltage divider (e.g. in an audio amplifier)

"Plain" adjustable resistance value

adjustable voltage divider


## Types of Potmeters

- Turn potmeters - with a portable rotation axis

from wikipedia.org
- Slide potmeters

- Linear - the resistance value is proportional to the degree of rotation or slide
- Logarithmic - regulate volume in an audio amplifier

TU/e
technische
universiteit
universiteit

## Calculation of Replacement Resistance Value



TU/e

## Calculation of Replacement Resistance Value



TU/e

## Calculation of Replacement Resistance Value

$V_{\text {in }}=10 \mathrm{~V}$ technische
universiteit
eindhoven

## Calculation of Replacement Resistance Value



TU/e technische
universiteit universiteit
eindhoven

## Calculation of Replacement Resistance Value



TU/e technische
universiteit eindhoven

## Calculation of Replacement Resistance Value



TU/e

