Chapter 2

Voltage, Current and Power

TU/e
technische
universiteit
universiteit
eindhoven \qquad

Voltage Current and Power

- Electrical power source
- Electricity grid (socket)
- Batteries for small, portable devices (need to be replaced / recharged)

$$
\begin{equation*}
P=V \cdot I \tag{2.1}
\end{equation*}
$$

Quantity	Unity	Symbol
Voltage, potential diff.	Volt (V)	V
Current	Ampere (A)	I
Power	Watt (W)	P

Table 2.1: Electrical quantities with their respective unities and symbols.

Electrical Power vs. Electrical Energy

- Electrical energy is the power consumed during a period of time.
- Units: J (Joule) or Watt-hour (W h)
- 1 Joule = 1 Watt-sec = 0.000278 Watt-hour
"We used *** electric power in this month" or
"We used *** electrical energy in this month"?
A simple calculation:
How much electrical energy will a given light bulb
TU/e use in hour?

Sources of electrical energy

$$
\rightarrow \text { Constant }
$$

Alternating (AC)
I or V fluctuates over
 time in a fixed rhythm like our grid voltage

Direct Current (DC)

Two types of electrical power sources:

- Batteries
- Electricity grid (socket)
- Direct Current (DC)
- Current always flows in the same direction.
- Alternating Current (AC)
- The direction of current alternates.

Direct Current (DC)

Features of an DC voltage source

- Constant voltages are supplied.
- An ideal DC voltage source:
the voltage is independent of the magnitude and duration of the current.
- Batteries are not the only DC sources. Why?
- DC sources connected to the electricity grid behave more or less like ideal DC-sources.

TU/e
technische
universiteit
eindhoven

Direct Current (DC)

Note

When doing experiments which require a constant voltage, you can make use of a DCpower source. These sources have at least two connections: the mass (black) and the positive potential (red). The mass can be seen as the ground and we take its potential as 0 V . The potential difference between the black and red connection is the voltage supplied by the source. In Appendix D you can find more information about the most common sources you will be using at the university.

Figure 19.1: A laboratory power supply.

Alternating Current (AC)

Figure 2.1: Example of an $A C$ sine waveform.

- Potential difference between the two plugs of the contact alternates.
- If we put a resistance between the plugs, we could see that the current alternates.

Alternating Current (AC)

$$
V(t)=V_{\text {top }} \cdot \sin (2 \pi \cdot f \cdot t+\varphi)
$$

f : frequency of the signal
$V_{\text {top }}$: the peak value or amplitude
t : time
T : the period of the sine wave ($\mathrm{T}=1 / \mathrm{f}$)
ω : the frequency of rotation ($\omega=2 . \pi . \mathrm{f}$)
φ : phase, can be zero [equation (2.2)]

Figure 2.1: Example of an AC sine waveform.

- In the Netherlands, $\mathrm{f}=50 \mathrm{~Hz}, \mathrm{~V}_{\text {top }}=325 \mathrm{~V}$ (why not 230 V ?)
- A lamp connected to the electricity grid goes on and off twice during one cycle.
- A combination/superposition of an AC voltage (V_{AC}) and a DC (V_{DC}) voltage
- $V_{D C}$ is called an offset voltage.
- This will be illustrated later, when you start working with a function generator.

RMS Values
 RMS: Root Mean Square

- Why RMS?
- $V_{\text {top }}$ is not a good measure of AC voltages.
- AC voltage changes all the time.
-RMS value - The effective value of a varying voltage or current. It is the equivalent steady DC (constant) value which has the same heating potential.
- RMS is also called the effective DC value.

TU/e
technische
universiteit
eindhoven

RMS Values

$$
\begin{equation*}
\frac{V_{R M S}^{2}}{R}=\left(\frac{V^{2}}{R}\right)_{\text {mean of period }} \tag{2.3}
\end{equation*}
$$

where $V_{R M S}$ is the RMS value (DC equivalent) of $V(t)$. Since R is constant, we get:

$$
\begin{equation*}
V_{R M S}^{2}=\left(V^{2}\right)_{\text {mean of period }} \tag{2.4}
\end{equation*}
$$

Since $V_{R M S}$ should be positive, this results in:

$$
\begin{equation*}
V_{R M S}=\sqrt{\left(V^{2}\right)_{\text {mean of period }}} \tag{2.5}
\end{equation*}
$$

The value of $\left(V^{2}\right)_{\text {mean }}$ of period can be calculated by summing up all the instantaneous values of $V^{2}(t)$ during one period, divided by the number of values $\left(\frac{1}{N}\left(V^{2}\left(t_{1}\right)+V^{2}\left(t_{2}\right)+\ldots+\right.\right.$ $\left.V^{2}\left(t_{N}\right)\right)$). This can be expressed as follows:

$$
\begin{equation*}
\left(V^{2}\right)_{\text {mean of period }}=\frac{1}{T} \int_{0}^{T} V(t)^{2} d t \tag{2.6}
\end{equation*}
$$

RMS Values

!! For a true sine wave

$V_{R M S}=0.7 \cdot V_{\text {peak }}$,	(2.7)
$V_{\text {peak }}=1.4 \cdot V_{R M S}$.	(2.8)

RMS is not a simple average!

TU/e

Sine Waves

- Sine waves are the most common type of AC.
- A dynamo on your bike is a small generator.
- A combination of mechanical and electromagnetic properties generates a sinusoidal signal.

Figure 2.1: Example of an AC sine waveform.

Sine Waves

- The rotating field in the generator can be seen as a vector.
- The sine wave is a proiection of this vector onto a certain axis.

Figure 2.2: The projection of a rotating vector on the y-axis results in a sine wave.
The change in θ over time is ω, which is related to the period time T by $\omega=2 \pi / \mathrm{T}$.
TU/e
echnische
universiteit
eindhoven

Energy vs. Information

- Voltages and currents are related to the electrical energy consumption of circuits.
- Voltages and currents are also used to transmit / receive information.
- Waveforms (sound wave)
- Digital bits (code)

TU/e
echnische
universiteit
eindhoven

Symbols of Sources and Meters

Exercise - RMS Calculation

For a sinusoidal signal,

$$
\begin{equation*}
V(t)=V_{\text {top }} \cdot \sin (2 \cdot \pi \cdot f \cdot t) \tag{2.2}
\end{equation*}
$$

Calculate its RMS by

$$
\begin{aligned}
& V_{R M S}^{2}=\frac{1}{T} \int_{0}^{T} V^{2}(t) d t \\
& V_{R M S}=\sqrt{\frac{1}{T} \int_{0}^{T} V^{2}(t) d t}
\end{aligned}
$$

Exercise - RMS Calculation

TU/e

Exercise - RMS Calculation

$$
\begin{aligned}
V_{R M S}^{2} & =\frac{1}{T} \int_{0}^{T} V_{\text {top }}^{2} \sin ^{2}(2 \pi f t) d t \\
& =\frac{V_{\text {top }}^{2}}{T} \int_{0}^{T} \frac{1-\cos (4 \pi f t)}{2} d t \quad \leftarrow \text { based on } \\
& =\frac{V_{\text {top }}^{2}}{2 T}\left[\int_{0}^{T} 1 d t-\int_{0}^{T} \cos (4 \pi f t) d t\right] \\
& =\frac{V_{\text {top }}^{2}}{2}
\end{aligned}
$$

Therefore,

$$
V_{R M S}=\frac{V_{t o p}}{\sqrt{2}} \approx 0.7 V_{t o p}
$$

