Introducing Electronics

Ch 10 Operational Amplifiers,

What are Amplifiers?

From www.gadgetuniverse.com

Introducing Electronics

Wei Chen

What are Amplifiers?

• An amplifier is any device that use a small amount of energy to generate a larger amount of energy.

(e.g. amplification of a signal that your mobile phone received on its antenna, ECG measurement, ect.)

• Gain is a measure of amplification.

 $G = V_{out} / V_{in}$ In specs, G = 10*log10 (P_{out}/P_{in}), with a unit of dB.

Types of amplifiers:

- Electronic amplifiers
- Transistor amplifiers
- Operational amplifiers

- ...

Optical amplifiers

• ...

What are Operational Amplifiers?

Figure 10.1: Schematic symbol for an operational amplifier.

$$V_{out} = G \cdot (V_{in+} - V_{in-}) \tag{10.1}$$

- G is the gain.
- When no other components are connected, G is in the order of 10⁵ to 10⁷! (open-loop voltage gain)
- The output voltage is limited by the +/- supply voltages. (clipping)

Closed-loop Model of Opamp

Figure 10.2: Operational amplifier with in a negative feedback configuration using a resistor.

I_{in} = 0 (high input impedance)
V_{in+} = V_{in-}

Closed-loop Model of Opamp

• $V_{in+} > V_{in-}$: the output voltage increase V_{in-} • $V_{in+} < V_{in-}$: the output voltage decrease V_{in-} • $I_{in} = 0$ • $V_{in+} = V_{in-}$

Op amps and Inverting Amplifiers

Figure 10.3: Operational amplifier used in an inverting amplifier circuit.

$$I = V_{in} / R_1$$

$$V_{out} = -\frac{R_2}{R_1} V_{in} \tag{10.2}$$

Op amps and Inverting Amplifiers

Figure 10.3: Operational amplifier used in an inverting amplifier circuit.

$$V_{out} = -\frac{R_2}{R_1} V_{in} \tag{10.2}$$

$$G = -R_2/R_1$$

• R_2 > R_1, Inverting amplifier
• R_2 < R_1, Inverting attenuator
• R_2 = R_1, Inverter

Op amps and Summing Amplifiers

$$V_{o} = -(V_{1}/R_{1} + V_{2}/R_{2} + ... + V_{n}/R_{n}) \cdot R_{f}$$

Op amps and Non-inverting Amplifiers

Figure 10.4: Operational amplifier used in a non-inverting amplifier circuit.

 $V_{out} = I (R_1 + R_2)$

$$V_{out} = (1 + \frac{R_2}{R_1})V_{in} \tag{10.3}$$

Op amps and Non-inverting Amplifiers

Figure 10.4: Operational amplifier used in a non-inverting amplifier circuit.

$$V_{out} = (1 + \frac{R_2}{R_1})V_{in}$$
(10.3)

G = 1 + R2 / R1

Operational Amplifiers

Datasheet will provide you with the parameters needed to make a good choice of which opamp to use.

Amplifying AC Signal

Figure 10.5: Operational amplifier used as AC amplifier.

TU/e technische universiteit eindhoven

Introducing Electronics

- Circuits performing comparison are called comparators.
- Clipping amplifiers (open-loop) can be used for comparators.

Figure 10.6: Operational amplifier used in a comparator circuit with static comparison.

TU/e technisc universi eindhov

$$V_{out} = G \cdot (V_{in+} - V_{in-})$$
 (10.1)

Figure 10.6: Operational amplifier used in a comparator circuit with static comparison.

TU/e technische universiteit eindhoven

Introducing Electronics

Output of a comparator when the input is clean.

Figure 10.7: The output of a comparator toggles when the input is noisy.

A Schmitt trigger is a comparator circuit that incorporates positive feedback.

 $V_{out, high} = 10 V$

$$V_{in+} = \frac{R_2}{R_2 + \frac{R_1 \cdot R_3}{R_1 + R_3}}$$
. $V_x = 5.24$ V

Output changes from high to low, when $V_{in} > V_{in+}$ (5.24 V).

Figure 10.9: An opamp with feedforward in a static comparator circuit. when $V_{in} > V_{in+}$ (5.24 V).

 $V_{out, low} = 0 V$ $V_{x} = 10 k\Omega$ V_{in} V_{in} V_{in} $R_{1} = 10 k\Omega$ V_{out} V_{out} V_{out} V_{in} V_{in}

 $V_{x} = 10 V$ $R_{1} = 10 k\Omega$ $R_{2} = 10 k\Omega$ V_{in+} $R_{3} = 100 k\Omega$ $V_{out} = 0 V$ $W_{aut} = 0 V$

$$V_{in+} = \frac{\frac{R_2 + R_3}{R_2 + R_3}}{R_1 + \frac{R_2 \cdot R_3}{R_2 + R_3}} \cdot V_x = 4.76 \text{ V}$$

Output changes from low to high, when $V_{in} < V_{in+}$ (4.76 V).

Figure 10.9: An opamp with feedforward in a static comparator circuit.

technische

TU/e

Introducing Electronics

The output of a comparator with feedforward does not make the output toggle for noisy input signals.

Figure 10.9: An opamp with feedforward in a static comparator circuit.

