Chapter 2

Voltage, Current and Power

Voltage Current and Power

- Electrical power source
 - Electricity grid (socket)
 - Batteries for small, portable devices (need to be replaced / recharged)

$$P = V \cdot I \tag{2.1}$$

Quantity	Unity	Symbol
Voltage potential diff.	Volt (V)	V
Current	Ampere (A)	I
Power	Watt (W)	P

Table 2.1: Electrical quantities with their respective unities and symbols.

Electrical Power vs. Electrical Energy

- Electrical energy is the power consumed during a period of time.
- Units: J (Joule) or Watt-hour (W h)
- 1 Joule = 1 Watt-sec = 0.000278 Watt-hour

"We used *** electric power in this month" or "We used *** electrical energy in this month"?

A simple calculation:

How much electrical energy will a given light bulb use in hour?

Sources of electrical energy

Limited

e.g. Batteries

Unlimited

e.g. Laboratory power supplies, our grid ...

Voltage

Laboratory power supplies, our grid,batteries

Current

Often embedded, part of a circuit

Direct (DC)

I or V constant over time

Alternating (AC)

I or V fluctuates over time in a fixed rhythm like our grid voltage

Direct Current (DC)

Two types of electrical power sources:

- Batteries
- Electricity grid (socket)
- Direct Current (DC)
- Current always flows in the same direction.
- Alternating Current (AC)
- The direction of current alternates.

Direct Current (DC)

Features of an DC voltage source

- Constant voltages are supplied.
- An ideal DC voltage source:
 the voltage is independent of the magnitude and duration of the current.
- Batteries are not the only DC sources. Why?
- DC sources connected to the electricity grid behave more or less like ideal DC-sources.

Direct Current (DC)

Note

When doing experiments which require a constant voltage, you can make use of a DC-power source. These sources have at least two connections: the mass (black) and the positive potential (red). The mass can be seen as the ground and we take its potential as 0 V. The potential difference between the black and red connection is the voltage supplied by the source. In Appendix D you can find more information about the most common sources you will be using at the university.

Figure 19.1: A laboratory power supply.

Alternating Current (AC)

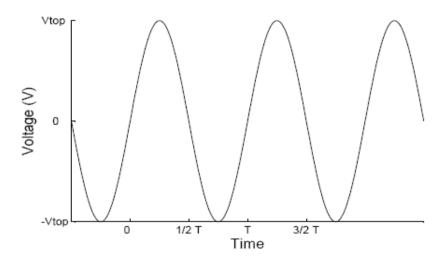


Figure 2.1: Example of an AC sine waveform.

- Potential difference between the two plugs of the contact alternates.
- If we put a resistance between the plugs, we could see that the current alternates.

Alternating Current (AC)

$$V(t) = V_{top} \cdot \sin(2\pi \cdot f \cdot t + \varphi)$$

f: frequency of the signal

 V_{top} : the peak value or amplitude

t:time

T: the period of the sine wave (T=1/f)

 ω : the frequency of rotation ($\omega = 2.\pi.f$)

 ϕ : phase, can be zero [equation (2.2)].

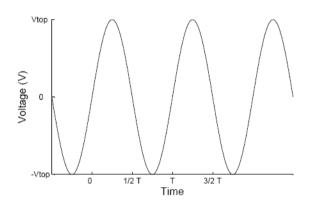


Figure 2.1: Example of an AC sine waveform.

- In the Netherlands, f = 50 Hz, $V_{\text{top}} = 325 \text{ V}$ (why not 230 V?)
- A lamp connected to the electricity grid goes on and off twice during one cycle.
- A combination/superposition of an AC voltage (V_{AC}) and a DC (V_{DC}) voltage
 - V_{DC} is called an offset voltage.
 - This will be illustrated later, when you start working with a function generator.

RMS Values

RMS: Root Mean Square

- Why RMS?
 - V_{top} is not a good measure of AC voltages.
 - AC voltage changes all the time.
- •RMS value The effective value of a varying voltage or current. It is the equivalent steady DC (constant) value which has the same heating potential.
- RMS is also called the effective DC value.

RMS Values

$$\frac{V_{RMS}^2}{R} = (\frac{V^2}{R})_{\text{mean of period}}$$
 (2.3)

where V_{RMS} is the RMS value (DC equivalent) of V(t). Since R is constant, we get:

$$V_{RMS}^2 = (V^2)_{\text{mean of period}}$$
 (2.4)

Since V_{RMS} should be positive, this results in:

$$V_{RMS} = \sqrt{(V^2)_{\text{mean of period}}}$$
 (2.5)

The value of $(V^2)_{\text{mean of period}}$ can be calculated by summing up all the instantaneous values of $V^2(t)$ during one period, divided by the number of values $(\frac{1}{N}(V^2(t_1) + V^2(t_2) + ... + V^2(t_N)))$. This can be expressed as follows:

$$(V^2)_{\text{mean of period}} = \frac{1}{T} \int_0^T V(t)^2 dt.$$
 (2.6)

RMS Values

!! For a true sine wave

$$V_{RMS} = 0.7 \cdot V_{peak}, \tag{2.7}$$

$$V_{peak} = 1.4 \cdot V_{RMS}. \tag{2.8}$$

RMS is not a simple average!

Sine Waves

- Sine waves are the most common type of AC.
- A dynamo on your bike is a small generator.
- A combination of mechanical and electromagnetic properties generates a sinusoidal signal.

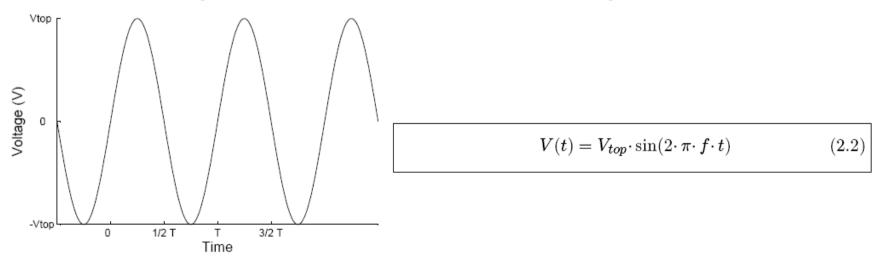


Figure 2.1: Example of an AC sine waveform.

Sine Waves

- The rotating field in the generator can be seen as a vector.
- The sine wave is a projection of this vector onto a certain axis.

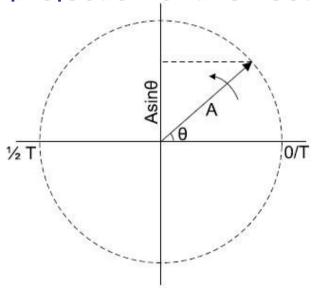
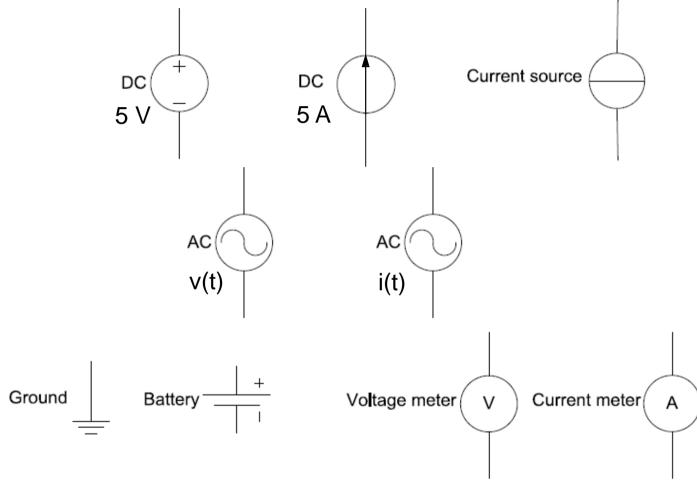


Figure 2.2: The projection of a rotating vector on the y-axis results in a sine wave.

The change in θ over time is ω , which is related to the period time T by $\omega = 2\pi/T$.



Energy vs. Information

- Voltages and currents are related to the electrical energy consumption of circuits.
- Voltages and currents are also used to transmit / receive information.
- Waveforms (sound wave)
- Digital bits (code)

Symbols of Sources and Meters

Exercise – RMS Calculation

For a sinusoidal signal,

$$V(t) = V_{top} \cdot \sin(2 \cdot \pi \cdot f \cdot t)$$
 (2.2)

Calculate its RMS by

$$V_{RMS}^2 = \frac{1}{T} \int_0^T V^2(t) dt$$

$$V_{RMS} = \sqrt{\frac{1}{T} \int_0^T V^2(t) dt}$$

Exercise – RMS Calculation

Exercise – RMS Calculation

$$\begin{split} V_{RMS}^2 &= \frac{1}{T} \int_0^T V_{top}^2 \sin^2(2\pi f t) dt \\ &= \frac{V_{top}^2}{T} \int_0^T \frac{1 - \cos(4\pi f t)}{2} dt \qquad \qquad \text{based on Trigonometric identities} \\ &= \frac{V_{top}^2}{2T} \bigg[\int_0^T 1 dt - \int_0^T \cos(4\pi f t) dt \bigg] \\ &= \frac{V_{top}^2}{2} \end{split}$$

Therefore,

$$V_{RMS} = \frac{V_{top}}{\sqrt{2}} \approx 0.7 V_{top}$$

