
Arduino and multitasking

How to start writing multi tasking programs in
Arduino from scratch

Jan Rouvroye

The problem

• It is hard to start programming from scratch
– Especially when building on existing examples from

internet

• Programs become unstructured (spaghetti
programming)
– hard to improve or add functionality
– hard to debug
– responsive interaction becomes a problem because loop()

becomes too slow

2

A solution

• Use a more structured approach for developing the
software by working step-by-step using finite state
machines as core of the program

• A ‘state’ is the condition of a thing at a specific time.
• Finite state machine: an abstract machine that can be in

one of a finite number of states
(wikipedia http://en.wikipedia.org/wiki/Finite-state_machine).
– Only one state at a time (current state).
– Change from one state to another when initiated by a triggering

event or condition (transition).
– Defined by a list of states, and triggering condition for each

transition.

3

Why is it useful

• Divides the program in smaller parts that can be programmed
(almost) independently:
for each state you need to consider what needs to happen
when
– the program enters a new state
– the program is/stays in a state
– the program leaves a state

• Provides a clear structure -> easier to build further upon
• Current state is always known -> simpler debugging
• Multiple state-machine processes can be combined in one

program (“multi-tasking”) -> better (faster) interaction
• Almost self documenting when implemented well

4

What we use here:
multitasking framework by Loe Feijs

Feijs, L.M.G. (2013). Multi-tasking and Arduino : why and
how?. In L.L. Chen, T. Djajadiningrat, L.M.G. Feijs, S. Fraser,
J. Hu, S. Kyffin & D. Steffen (Eds.), Conference Paper : Design
and semantics of form and movement. 8th International
Conference on Design and Semantics of Form and
Movement (DeSForM 2013), 22-25 September 2013, Wuxi,
China, (pp. 119-127).

Download from: http://purl.tue.nl/601467275212099.pdf

5

Core principle of this multitasking approach

• Run loop() at fixed (short) intervals
• So relation between time passed and number of

passes of the loop function is known
(principle is frequently used in plc machine control computers)

• This means we can use counters for timing! No need
to check time using millis()

• Use step function for dealing with sensors and
actuators each time of passing through loop()

6

Example 1: Blink

• Blink: We want to program a LED to blink on/off at
certain time intervals.

• States? Transitions? Processes?
– One process: ledStep() which handles the led
– States: led can be on or off
– Transitions: when timer expired change to other state

7

State transition and data flow diagram

8

LED
OFF

LED
ON

Timer
expired

Timer
expired

Initial

ledStep

ledTimer ledState

On, Offdecrement
timer

What to do related to each state

 LED OFF LED ON

When
entering

 - switch off led
 - initialize timer

 - switch on led
 - initialize timer

When in state
 - decrease timer
 - when timer expires change
state to LED ON

 - decrease timer
 - when timer expires change
state to LED OFF

When leaving - -

LED
OFF

LED
ON

Timer
expired

Timer
expired

Initial

9

Programming state machines

• Use counters that count number of passes of the loop for timing
• Program state machine using switch() construction

switch (var)
{
 case label1:
 // statements for label1
 break;

 case label2:
 // statements for label2
 break;
 …
 default:
 // statements for other labels (optional)
}

10

Execute part of program depending
on value of variable ‘var’

If the value of ‘var’ = = labeli: execute
the statements until next break;

Optional (may or may not be included) for other
values of ‘var’ execute the following statements

loop()

void loop()
 {

 ledStep();

 delay(10); // loop once every 10 ms (if no other processes delay execution)

 }

A function is a block of code designed to perform
a particular task

This function will perform the process for the led
state machine.
It runs every time the loop runs, so every 10 ms

11

ledStep()

void ledStep() {

 switch(ledState) {

 case LED_ON:

 digitalWrite(LED_PIN, HIGH);

 if (ledTimer > 0) // stay in LED_ON state

 ledTimer = ledTimer - 1;

 else { // change to LED_OFF state

 ledState = LED_OFF;

 ledTimer = LED_OFF_TIME; // initialize timer for LED_OFF state

 }

 break;

 case LED_OFF:

 digitalWrite(LED_PIN, LOW);

 if (ledTimer > 0) // stay in LED_OFF state

 ledTimer = ledTimer - 1;

 else { // change to LED_ON state

 ledState = LED_ON;

 ledTimer = LED_ON_TIME; // initialize timer for LED_ON state

 }

 break;

 }

}

LED
OFF

LED
ON

Timer
expired

Timer
expired

Initial

Each time passing the
loop ledTimer will
decrease by 1; if it
becomes 0 state will
change and ledTimer
will be re-initialized

12

Initializations and setup()

#define LED_PIN 11 // pin where led is connected

#define LED_OFF 0

#define LED_ON 1

#define LED_OFF_TIME 250 // number of intervals of 10 ms when the led is off
#define LED_ON_TIME 10 // number of intervals of 10 ms when the led is on

int ledState; // variable indicating the state of the led, either LED_OFF or LED_ON

int ledTimer; // counter for the number of intervals of 10 ms when timing is needed

void setup()
{

 pinMode(LED_PIN, OUTPUT);

 ledState = LED_OFF; // initial state is LED_OFF

 ledTimer = LED_ON_TIME;

}

I prefer using pre-compiler
statements

Global scope for
ledState and ledTimer
because they are used
in several functions

13

Complete program

/* This program blinks a led without the use of the delay function
 * Multitasking framework used is from paper by Loe Feijs entitled Multi-tasking
 * and Arduino: Why and How? Published in Chen, L.-L., T. Djajadiningrat,
 * L. Feijs, S. Fraser, J. Hu, S. Kyffin and D. Steffen, Eds. (2013).
 * Design and semantics of form and movement. 8th International Conference
 * on Design and Semantics of Form and Movement (DeSForM 2013).
 * ISBN 978-90-386-34623, Wuxi, Philips
 *
 * Software coding Jan Rouvroye for workshop multitasking Arduino.
 * Last edit: May 23, 2014
 */

#define LED_PIN 11 // pin where led is connected
#define LED_OFF 0
#define LED_ON 1
 #define LED_OFF_TIME 250 // number of intervals of 10 ms when the led is off
#define LED_ON_TIME 10 // number of intervals of 10 ms when the led is on

int ledState; // variable indicating the state of the led, either LED_OFF or LED_ON
int ledTimer; // counter for the number of intervals of 10 ms when timing is needed

void setup() {
 pinMode(LED_PIN, OUTPUT);
 ledState = LED_OF; // initial state is LED_ON

 ledTimer = LED_OFF_TIME;
 }

void loop() {
 ledStep();

 delay(10); // loop once every 10 ms (if no other processes delay execution)
}

void ledStep() {
 switch(ledState) {
 case LED_ON:
 digitalWrite(LED_PIN, HIGH);
 if (ledTimer > 0) // stay in LED_ON state
 ledTimer = ledTimer - 1;
 else { // change to LED_OFF state
 ledState = LED_OFF;
 ledTimer = LED_OFF_TIME; // initialize timer for
LED_OFF state
 }
 break;

 case LED_OFF:
 digitalWrite(LED_PIN, LOW);
 if (ledTimer > 0) // stay in LED_OFF state
 ledTimer = ledTimer - 1;
 else { // change to LED_ON state
 ledState = LED_ON;
 ledTimer = LED_ON_TIME; // initialize timer for LED_ON
state
 }
 break;
 }
}

14

Example 2: hotel corridor light

• We want to create a light that:
– Is off by default (energy saving) and switches to full

brightness after a button has been pressed
– Stays on full brightness for a certain time period
– Then slowly fades to off so if needed the user has time to

press the button again
– When the button is pressed during fading the light goes to

full brightness once more and the timer is reset
– We want to include debouncing for the button

15

Processes

• One process for detecting whether the button is
pressed (including debouncing): buttonStep()

• One process for controlling the led: ledStep()

• buttonStep() communicates to ledStep() whether
valid button press has been detected

• Both processes will be implemented as finite state
machines

16

Led process: states, transitions?

• Led process

17

 LED OFF LED ON LED FADING

When entering - switch off led

 - switch on led
 - initialize onTimer

- initialize fadeTimer

When in state
 - if buttonEvent = =
true change state to
LED ON

 - decrease onTimer
 - when onTimer expires
change state to LED
FADING

- when timer expires
change fadeValue, re-
initialize fadeTimer
- if buttonEvent = = true
change state to LED ON
- if fadeValue == 0 change
state to LED OFF

When leaving - - -

Led process: state transition diagram

18

LED
OFF

LED
FADE
OFF

LED
ON

Timer
expired

Button
pressed event

Fade off
completed

Button
pressed event

Initial

Button process: states, transitions?

• Button process

19

 IDLE DEBOUNCING

When entering -
 - initialize counter
 - initialize timer

When in state - if button is pressed change
state to DEBOUNCING

 - decrease timer
- if button is pressed increase
counter
 - when timer expires
 set buttonEvent according to
evaluation result ,change state to
IDLE

When leaving - -

Button process: state transition diagram

20

Button
idle

Button
debouncing

Button
pressed

Initial
Timer

expired

Data flow diagram

21

ledStepbuttonStep

ledState
Timers

buttonEvent

On, Off, Fade

idle,
debouncing

counter

buttonState

timer

The program: loop()

void loop() {

 buttonstep();

 ledStep();

 //printDebuginfo();

 delay(10); // loop once every 10 ms (if no other processes delay execution)

}

22

These functions will perform the process for the
button respectively led state machine.
They run every time the loop runs, so every 10 ms

This function will print information for debugging to
the serial port. Commented out during regular use
because it slows down loop() too much while printing
which results in timing issues

The program: ledStep()

void ledStep() {
 // handles the led depending on the led state

 static int onTimer; // timer for led on full brightness

 static int fadeTimer; // timer for fading

 static int currentPwm = 0; // pwm settng for led (0-255)

 switch(ledState) {
 case STATE_LED_OFF:

 currentPwm = 0;
 if (buttonEvent == true) {
 ledState = STATE_LED_ON;
 onTimer = ONTIMER_SETTING;
 }

 break;

 case STATE_LED_ON:

 currentPwm = 255;
 if (onTimer > 0)
 onTimer = onTimer - 1;
 else {

 ledState = STATE_LED_FADEOFF;
 fadeTimer = FADETIMER_SETTING;
 }

 break;

… … continued on next slide … …

23

Value will be written to led pin at the
end of ledStep()

The program: ledStep() continued

void ledStep() {

 // handles the led depending on the led state

 static int onTimer; // timer for led on full brightness

 static int fadeTimer; // timer for fading

 static int currentPwm = 0; // pwm setting for led (0-255)

 switch(ledState) {

 case STATE_LED_OFF: … … break;

 case STATE_LED_ON: … … break;

 case STATE_LED_FADEOFF:

 if (fadeTimer > 0)
 fadeTimer = fadeTimer - 1;

 else {

 fadeTimer = FADETIMER_SETTING;
 currentPwm = currentPwm - FADESTEP;

 if (currentPwm < 0) {

 currentPwm = 0;

 ledState = STATE_LED_OFF;

 }

 }

 if (buttonEvent == true) {

 ledState = STATE_LED_ON;

 onTimer = ONTIMER_SETTING;

 }

 break; }

 analogWrite(LED_PIN, currentPwm);

}
24

See previous slide

If timer expires: decrease pwm value
Value will be written to led pin at the
end of ledStep()

The program: buttonStep()

void buttonstep() {
 // reads button, performs debouncing and sets buttonEvent indicator accordingly
 int buttonValue;
 static int buttonState = STATE_BUTTON_IDLE;
 static int buttonPressedcounter, debounceTimer;

 buttonValue = digitalRead(BUTTON_PIN);

 buttonEvent = false;
 switch(buttonState) {
 case STATE_BUTTON_IDLE:
 if (buttonValue == LOW) //remember LOW means button is being pressed {
 buttonPressedcounter = 1;
 buttonState = STATE_BUTTON_DEBOUNCING;
 debounceTimer = DEBOUNCE_TIMER_SETTING;
 }
 break;
 case STATE_BUTTON_DEBOUNCING:
 if (buttonValue == LOW)
 buttonPressedcounter++;

 debounceTimer--;
 if (debounceTimer < 0) // timer expired {
 buttonState = STATE_BUTTON_IDLE;
 if (buttonPressedcounter > DEBOUNCE_TIMER_SETTING/2)
 // button is assumed to be pressed when at least half of the time of the debouncing period it was
pressed
 buttonEvent = true;
 }
 break;
 }
}

 25

First time button press detected from
within idle state.

If button press detected within
debouncing interval: increase count

After timer has expired: indicate
whether press is valid

The program: initializations and setup()

#define LED_PIN 11 // pin where led is connected
#define BUTTON_PIN 12 // pin where button is connected
// states for led
#define STATE_LED_OFF 0
#define STATE_LED_ON 1
#define STATE_LED_FADEOFF 2
// states for button
#define STATE_BUTTON_IDLE 0
#define STATE_BUTTON_DEBOUNCING 1
// other settings
#define DEBOUNCE_TIMER_SETTING 15 // timer setting for button debouncing
#define ONTIMER_SETTING 500 // timer setting for led on
#define FADETIMER_SETTING 10 // timer setting for fade off to dimmed (number of timesteps before next
fade step)
#define FADESTEP 1 // pwm setting for dimmed state

int ledState; // variable indicating the state of the led
boolean buttonEvent = false; // indicator buttonpress has been registered after debouncing (true or
false)

void setup() {
 Serial.begin(9600); // for debugging

 pinMode(LED_PIN, OUTPUT);
 ledState = STATE_LED_OFF;
 analogWrite(LED_PIN, 0);

 pinMode(BUTTON_PIN, INPUT_PULLUP);
}

26

The program: printDebuginfo()

void printDebuginfo() {
 Serial.print("buttonEvent: ");
 Serial.print(buttonEvent);
 Serial.print("\t");
 Serial.print("\t");
 Serial.print("ledState: ");
 Serial.print(ledState);
 Serial.print("\t");
 Serial.println();
}

27

Print relevant information for debugging to the serial
port, one line each time the function runs. Separation
is done using tabs (“\t”)

Exercise

Make a better hotel corridor light that:
• Is off when the environment has a sufficient light level
• When the environment is dark the light fades on to a

dimmed setting
• The light switches to full brightness after a button has

been pressed at any time
• Stays on full brightness for a certain time period
• Then slowly fades to off to the setting determined by the

light level in the environment so if needed the user has
time to press the button again

• We want to include debouncing for the button

28

Hardware pictures

29

Hardware:
- Sensor: LDR
connected to pin A0 using
voltage divider

Hardware:
- Light: LED connected to digital pin 11 and GND
- button connected to pin 12 and GND

Hardware schematics

30

Steps

1. Define processes and determine how they interact
2. For each process define states and transitions
3. Make state transition and data flow diagrams
4. For each state determine what to do when

– Entering state
– Staying in the state
– Leaving the state

5. Now you can start programming

31

Programming

1. Start with developing the loop() function
2. Program the processes in separate functions

– Program the state machines by focusing on each state
separately.

– Don’t forget initializations for the next state when
changing state.

3. Program declarations, initializations, definitions on
the fly when you need them

4. It may be worthwhile to include a function to create
output for debugging.

32

Tips and tricks

• In order to react to slow environmental changes only, use
a moving average for example the exponentially
weighted moving average:

• Programming this:

static float ldrAvg = (float)analogRead(LDR_PIN); // initialize average with current value

ldrValue = analogRead(LDR_PIN);

ldrAvg = alfa*(float)ldrValue + (1-alfa)*ldrAvg;

33

𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡 = 0) = 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑡𝑡 = 0)
𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡 + ∆𝑡𝑡) = 𝛼𝛼 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) + (1 − 𝛼𝛼) ∗ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑡𝑡)
0 < 𝛼𝛼 < 1

	Arduino and multitasking
	The problem
	A solution
	Why is it useful
	What we use here: �multitasking framework by Loe Feijs
	Core principle of this multitasking approach
	Example 1: Blink
	State transition and data flow diagram
	What to do related to each state
	Programming state machines
	loop()
	ledStep()
	Initializations and setup()
	Complete program
	Example 2: hotel corridor light
	Processes
	Led process: states, transitions?
	Led process: state transition diagram
	Button process: states, transitions?
	Button process: state transition diagram
	Data flow diagram
	The program: loop()
	The program: ledStep()
	The program: ledStep() continued
	The program: buttonStep()
	The program: initializations and setup()
	The program: printDebuginfo()
	Exercise
	Hardware pictures
	Hardware schematics
	Steps
	Programming
	Tips and tricks

