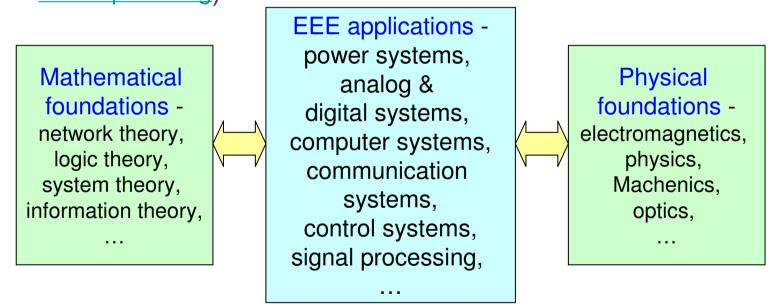
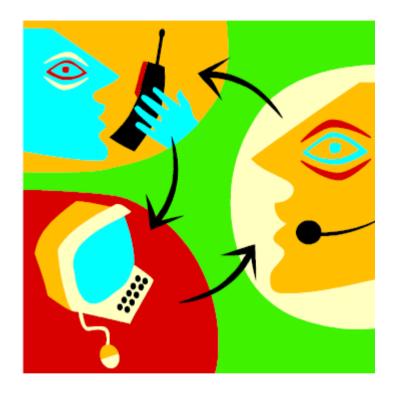
7 fYUjj Y Electronics


Assignor Information

Dr. Wei Chen Assistant Professor Department of Industrial Design Designed Intelligence w.chen@tue.nl

What is Electrical & Electronics Engineering (EEE)?

• EEE is a field of engineering that deals with the study and application of electricity, electronics and electromagnetism (from en.wikipedia.org)



EEE disciplines & their connections to mathematical and physical foundations Adapted from Figure 1.1, "Principles and applications of electrical engineering", Giorgio Rizzoni, Rev. 4th ed. *Publisher* London : McGraw-Hill, 2004

Why Electronics

- Computers & Internet
- TV & Mobile Phones
- CDs & DVDs
- MP3 & ipod
- GPS navigation
- Digital Cameras
- Robots
- Health Monitoring
- Virtual Reality
- Ambient Intelligence

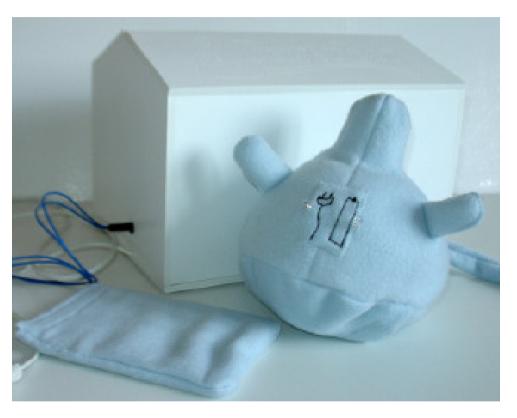
•

TU/e universiteit eindhoven

Sensors, Actuators, Transistors,

Green street, B1.1 project, designed by Ivo Wouters, Bart van Oorschot, Jasper Blom, Maarten Woudstra, Rick Paffen and Rik Hermans <u>http://www.youtube.com/watch?v=rOWoT-PJPil</u>

TU/e technisc universit eindhove



Sensors, Actuators, LEDs, Computer interface

. . .

Rhythm of life (I&II), M1.1 and B2.1 project, designed by Floris Kimman, Maarten Geraets, Yening Jin, Nicolas Nelson, Mark Thielen, Yi Xue

Inductors, Capacitors, Circuit analysis,

. . .

PowerBoy, M1.1 project, designed by Freek Boesten

sensors, impedance, filters,

. . .

Smart jacket for NICU, M2.2 project, designed by Sibrecht Bouwstra

Introducing Electronics

Wei Chen

Objectives of Assignment

- Introduce the most important concepts and knowledge of EEE (what does it stand for?)
- Introduce equipments and methods for practical measurements
- Understand and design simple electronic circuits
- Hands-on skills through practical experiments
- Target competency area 2: Integrating Technology related competency area D analysing complexity

Good Learning

- Concept: get the idea in the lectures
- Compute: do exercise and questions THINK!
- Compare: work in labs to "convert mind to motion"
- Communicate: work in groups, discuss
- (But) Do not copy or cheat on assessment work

Getting Help

- Lectuers
- Your fellow students
- Reference books:

"Principles and applications of electrical engineering", Giorgio Rizzoni,

Rev. 4th ed. Publisher London : McGraw-Hill, 2004

- Internet
- Nontechnical questions:
- Your coaches
- Study adviser

Getting Help

Google search

http://nl.wikipedia.org/wiki/Wikipedia http://en.wikipedia.org/wiki/Wikipedia [Very nice on-line encyclopedia]

http://users.pandora.be/educypedia/electronics/digital.htm [Very nice site on electronics, with lots of links]

http://www.Hobby-Electronics.info [Very nice site on electronics, with lots of links and a very useful online 'electronics' course in Dutch as wel in English]

http://www.virtual-oscilloscope.com/ [Beautiful simulation of a real life two channel oscilloscope. You can turn and push every knob and study the effect]

http://www.fontys.nl/werktuigbouwkunde/medewerker/cvanleuken/mechatronica/oscilloscope.htm [IN DUTCH. Good tutorial on oscilloscopes guided by an explanation of every function knob and button of a real life two channel oscilloscope]

http://www.ee.usyd.edu.au/tutorials_online/topics/labintro/labintro.html [Online tutorial on DC power supplies, function generators, digital multimeters and oscilloscopes]

http://www.st-andrews.ac.uk/~www_pa/Scots_Guide/intro/electron.htm [Beautiful and extensive site on electronics]

http://www.circuitsonline.net/ [IN DUTCH. Nice site on electronics. Lots of practical information]

http://www.iguanalabs.com/breadboard.htm [Short tutorial on how to use a breadboard (socket board)]

http://www.kpsec.freeuk.com/index.htm [Nice site on electronics. Lots of practical information]

eindhoven

Text Book Icons

an important note

a question which you have to answer

an example which clearifies the discussed theory

Ε

?

an optional exercise which will help you in understanding formulas and gaining insights

a practical assignment which you have to do

a building block which you have to create

Text book, planning and lecture notes can be found on Oase in the DG291 folder of Handout.

Units

lower case prefix symbols	prefix name yocto zepto atto femto pico nano micro milli centi deci [unity]	prefix symbol z a f p n µ m c d [none]	power-of-ten 10 ⁻²⁴ 10 ⁻²¹ 10 ⁻¹⁸ 10 ⁻¹⁵ 10 ⁻¹² 10 ⁻⁹ 10 ⁻⁶ 10 ⁻³ 10 ⁻² 10 ⁻¹ 10 ⁻¹
symbols	[unity] deka hecto kilo -	[none] da h k	100 10+1 10+2 10+ ³
upper case prefix symbols	mega giga tera peta exa zetta yotta	M G T P E Z Y	10+6 10+9 10+12 10+15 10+18 10+21 10+24

For example: A, mA

From www.poynton.com/notes/units/index.html

TU/e technische universiteit eindhoven

Chapter 2

Voltage, Current and Power

Introducing Electronics

Wei Chen

Voltage Current and Power

- Electrical power source
 - Electricity grid (socket)
 - Batteries for small, portable devices (need to be replaced / recharged)

$$P = V \cdot I \tag{2.1}$$

Quantity	Unity	Symbol
Voltage, potential diff.	Volt (V)	V
Current	Ampere (A)	I
Power	Watt (W)	Р

 Table 2.1: Electrical quantities with their respective unities and symbols.

Electrical Power vs. Electrical Energy

- Electrical energy is the power consumed during a period of time.
- Unity: J (Joule)
- Watt-hour (W·h) or the kiloWatt-hour (kW·h)

"We used *** electric power in this month" or "We used *** electrical energy in this month"?

A simple calculation: How much electrical energy will a light bulb use?

Direct Current (DC)

Two types of electrical power sources:

- Batteries
- Electricity grid (socket)
- Direct Current (DC)
- Current always flows in the same direction.
- Alternating Current (AC)
- The direction of current alternates.

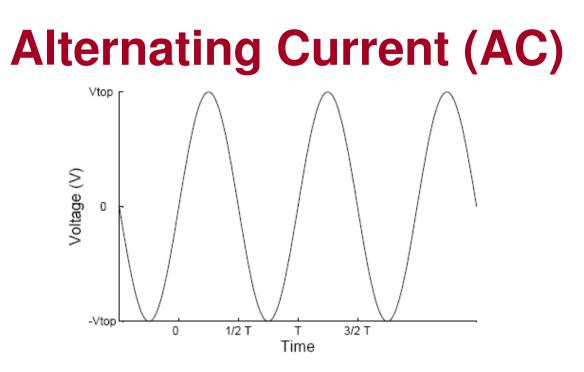
Direct Current (DC)

Features of an DC voltage source

- Constant voltages are supplied.
- An ideal DC voltage source: the voltage is independent of the magnitude and duration of the current.
- Batteries are not the only DC sources. Why?
- DC sources connected to the electricity grid
- Behave like ideal DC-sources.

Direct Current (DC)

Note


When doing experiments which require a constant voltage, you can make use of a DCpower source. These sources have at least two connections: the mass (black) and the positive potential (red). The mass can be seen as the ground and we take its potential as 0 V. The potential difference between the black and red connection is the voltage supplied by the source. In Appendix D you can find more information about the most common sources you will be using at the university.

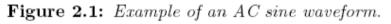


Figure 19.1: A laboratory power supply.

Introducing Electronics

- Potential difference between the two plugs of the contact alternates.
- If we put a resistance between the plugs,
 we could see that the current alternates.

Alternating Current (AC)

 $V(t) = V_{top} \cdot \sin(2\pi \cdot f \cdot t + \varphi)$

f : frequency of the signal

V_{top}: the peak value or amplitude t: time

T : the period of the sine wave (T=1/f)

 ω : the frequency of rotation ($\omega=2\cdot \ \pi \cdot \ f)$

 ϕ : phase, can be zero [equation (2.2)].

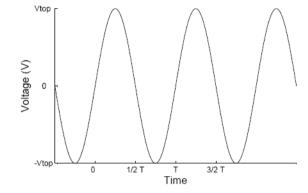


Figure 2.1: Example of an AC sine waveform.

- In the Netherlands, f = 50 Hz, $V_{top} = 325 \text{ V}$ (why not 230 V?)
- A lamp connected to the electricity grid goes on and off twice during one cycle.
- A combination/superposition of an AC voltage (V_{AC}) and a DC (V_{DC}) voltage
 - V_{DC} is called an offset voltage.
 - This will be illustrated later,

when you start working with a function generator.

RMS Values

RMS: Root Mean Square

- Why RMS?
 - V_{top} is not a good measure of AC voltages.
 - AC voltage changes all the time.
- RMS value The effective value of a varying voltage or current. It is the equivalent steady DC (constant) value which has the same heating potential.
- RMS is also called the effective DC value.

RMS Values

$$\frac{V_{RMS}^2}{R} = \left(\frac{V^2}{R}\right)_{\text{mean of period}}$$
(2.3)
V_{RMS} is the RMS value (DC equivalent) of *V(t)*.

where V_{RMS} is the RMS value (DC equivalent) of V(t). Since R is constant, we get:

$$V_{RMS}^2 = (V^2)_{\text{mean of period}}$$
(2.4)

Since V_{RMS} should be positive, this results in:

$$V_{RMS} = \sqrt{(V^2)_{\text{mean of period}}}.$$
 (2.5)

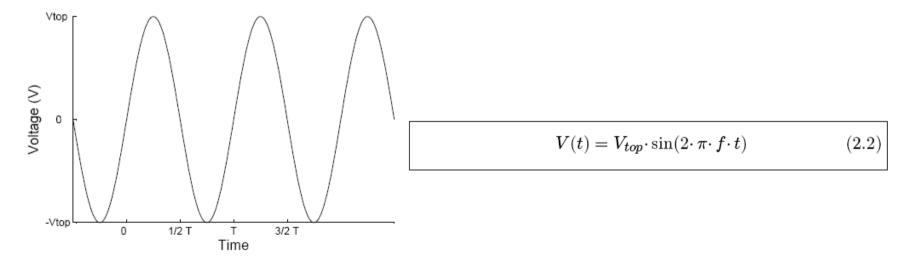
The value of $(V^2)_{\text{mean of period}}$ can be calculated by summing up all the instantaneous values of $V^2(t)$ during one period, divided by the number of values $(\frac{1}{N}(V^2(t_1) + V^2(t_2) + ... + V^2(t_N)))$. This can be expressed as follows:

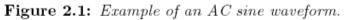
$$(V^2)_{\text{mean of period}} = \frac{1}{T} \int_0^T V(t)^2 dt.$$
 (2.6)

TU/e technische universiteit eindhoven

RMS Values

!! For a true sine wave


$V_{RMS} = 0.7 \cdot V_{peak},$	(2.7)
$V_{peak} = 1.4 \cdot V_{RMS}.$	(2.8)


RMS is not a simple average!

Sine Waves

- Sine waves are the most common type of AC.
- A dynamo on your bike is a small generator.
- A combination of mechanical and electromagnetic properties generates a sinusoidal signal.

TU/e technia universe eindho

Introducing Electronics

Sine Waves

- The rotating field in the generator can be seen as a vector.
- The sine wave is a projection of this vector onto a certain axis.

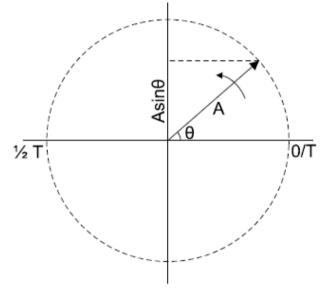
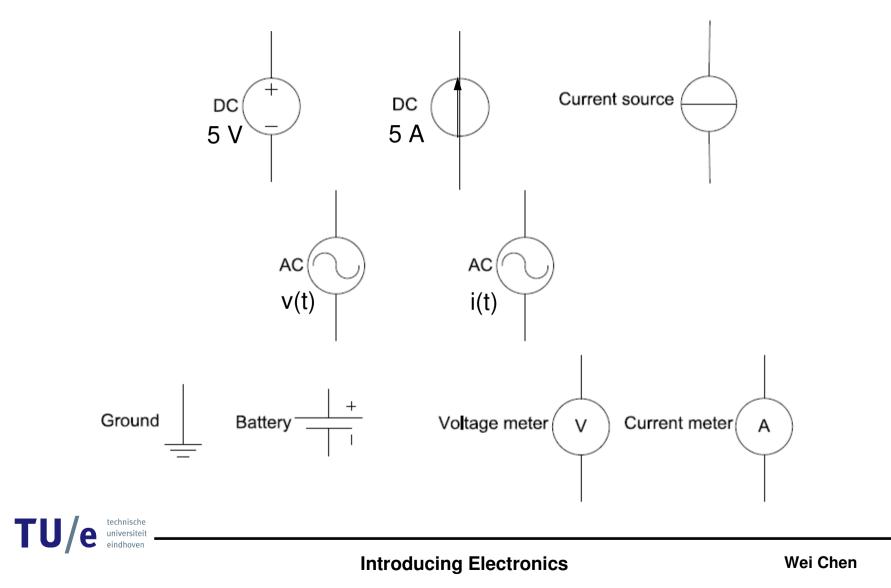


Figure 2.2: The projection of a rotating vector on the y-axis results in a sine wave.

The change in θ over time is $\omega,$ which is related to the period time T by $\omega=2\pi/T.$


TU/e technis universe eindhow

Energy vs. Information

- Voltages and currents are related to the electrical energy consumption of circuits.
- Voltages and currents are also used to transmit / receive information.
- Waveforms (sound wave)
- Digital bits (code)

Symbols of Sources and Meters

Software Programs for Circuit Drawing

 Microsoft Visio http://w3.tue.nl/en/services/dienst_ict/ services/services_wins/software/

Draw circuits professionally for your report!

Exercise – RMS Calculation

For a sinusoidal signal,

$$V(t) = V_{top} \cdot \sin(2 \cdot \pi \cdot f \cdot t) \tag{2.2}$$

Calculate its RMS by

$$V_{RMS}^2 = \frac{1}{T} \int_0^T V^2(t) dt$$

$$V_{RMS} = \sqrt{\frac{1}{T}} \int_0^T V^2(t) dt$$

TU/e technische universiteit eindhoven

Exercise – RMS Calculation

TU/e technische universiteit eindhoven

Exercise – RMS Calculation

$$V_{RMS}^{2} = \frac{1}{T} \int_{0}^{T} V_{top}^{2} \sin^{2}(2\pi ft) dt$$

= $\frac{V_{top}^{2}}{T} \int_{0}^{T} \frac{1 - \cos(4\pi ft)}{2} dt$ \leftarrow based on
Trigonometric identities
= $\frac{V_{top}^{2}}{2T} \left[\int_{0}^{T} 1 dt - \int_{0}^{T} \cos(4\pi ft) dt \right]$
= $\frac{V_{top}^{2}}{2}$

Therefore,

$$V_{RMS} = \frac{V_{top}}{\sqrt{2}} \approx 0.7 V_{top}$$

TU/e technische universiteit ------