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What is complexity and how to measure complexity?

• Computational complexity

 practice: example in Processing
 theory: big-O notation
 theory: NP-complete problems

• Information theory complexity

 Shannon’s aproach:
 Kolmogorov’s approach:
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Example:
computing Fibonacci numbers

















Theory: Big-O notation

• Two programs: 
 naive.pde (compute the nth Fibonacci number)
 smart.pde (idem)

• Big-O notation characterizes a function according to its growth rate
 write T1(n) for the execution time of the first program, given n

• T1(n) = O( 2n )
 meaning that for sufficiently large n 

T1(n) does not grow faster than 2n

 formally:
there exist constants C and N such that 
T1 (n) ≤ C×2n for all n > N

Recommended reading: 
http://web.mit.edu/16.070/
www/lecture/big_o.pdf



Fact: T1(n) = O( 2n )
Stronger statement: T1(n) = O( 1.63n )

What about the second program?
Fact: T2(n) = O( n )
which is a significant improvement

Typical complexities:
O( 1 ) constant

O( n ) linear

O( n2 ) quadratic

O( nc ) polynomial

O( cn ) exponential

Recommended reading: 
http://web.mit.edu/16.07
0/www/lecture/big_o.pdf

12365 / 7623 = 1.6221



NP-complete problems

• A problem is a well-defined program specification

 compute the nth Fibonacci number
 sort any given list of n numbers
 find a shortest path from a to b in any network of n nodes (distances given)
 find a shortest return path along all n nodes in a network (distances given)

The last problem is called the “Travelling Salesman Problem”
Theory:

it belongs to the class of NP-complete problems
for which any solution program’s execution time is O( cn )
whether polynomial solution programs exist is an open problem 
solving this “P=NP” problem deserves a $1,000,000 Millenium-prize 

Practice:
find good-enough approximations, not shortest
these problems pop-up in design, e.g. our WS lab

https://commons.wikimedia.org/wiki/File:TSP_Deutschland_3.png
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Computational complexity: an overview

• Each program has a run-time complexity
 naive fibonacci: exponential
 smart Fibonacci: linear

• Each problem belongs to a complexity class, for example:
 problems having polynomial solutions (e.g. Fibonacci)
 problems having exponential solutions, no polynomial (if P≠NP)
 problems having no solutions at all (e.g. the halting problem)



Information entropy as a 
measure for complexity

Notes for CAS
Feijs, 2019-2020



How to measure complexity?

• Shannon’s aproach:
assume a source which produces random messages,
how many bits do we need on average to code a message?

• Kolmogorov’s approach:
assume a fixed message

(a tekst, or an image, for example),
how long is the shortest program 

that will reproduce the message?

Claude Shannon in 1948 
Source: www.i-programmer.info

Andrei Kolmogorov 
Source: http://www.mi.ras.ru

Kolmogorov, A. (1968). Logical basis for information theory and 
probability theory. IEEE Transactions on Information Theory, 
14(5), 662-664.

A Mathematical Theory of Communication", Bell System Technical 
Journal, vol. 27, pp. 379-423 & 623-656, 1948



Examples:

• “010011010110100110010011100101001001011001”
• “000000000000010000000000000100000000000001”
• int tm(int i, int N){int im = i%(2*N); return im<N? im : (2*N)-im;}
• “a[i][j] = (tm(i,N)+1000+1 - tm(j-1,N+1))%4 <2? true : false;”
• •



Shannon’s aproach:

Assume source X
with alphabet {A,B,C,D}
and probabilities P(A)=0.5, P(B) = 0.25, P(C)= 0.125, P(D) = 0.125

Information per letter
H(A) = ─ 2log 0.5 = ─ (─ 1) = 1 bit
H(B) = ─ 2log 0.25 = ─ (─ 2) = 2 bit
H(C) = ─ 2log 0.125 = ─ (─ 3) = 3 bit
H(D) = ─ 2log 0.125 = ─ (─ 3) = 3 bit

Complexity of this source
H(X) = ½ . 1 + ¼ . 2 + ⅛ . 3 + ⅛ . 3 = 1¾ = 1.75 bit per letter



Shannon’s aproach:

Claim: we can code these letters in
1.75 bit (on average)

“Huffman coding”
A → 0
B → 10
C → 110
D → 111

Decoding: BABADACA was 10010011101100
DDDDDDDD was 111111111111111111111111

Source: A Mathematical Theory of Communication", 
Bell System Technical Journal, vol. 27, pp. 379-423 
& 623-656, 1948



H(X) = ∑i -pi
2log pi

Special case: 
two-letter alphabet
P(A) = p1 = p 
P(B) = p2 = (1 ─ p)

H(X) = ─ p 2log p – (1 ─ p)2log (1 ─ p)
Source: A Mathematical Theory of Communication", 
Bell System Technical Journal, vol. 27, pp. 379-423 
& 623-656, 1948



Shannon’s aproach (with conditional probabilities):

Claim: we can code these letters in
1.75 bit (on average)

“Huffman coding”
A → 0
B → 10
C → 110
D → 111

BABADACA ←10010011101100
DDDDDDDD ← 111111111111111111111111

Source: A Mathematical Theory of Communication", 
Bell System Technical Journal, vol. 27, pp. 379-423 
& 623-656, 1948

Source: A Mathematical Theory of Communication", Bell System 
Technical Journal, vol. 27, pp. 379-423 & 623-656, 1948

Later, (1951, Shannon): English between .5 and 1.3 bit per char



How to measure complexity, 2nd approach?

• Kolmogorov’s approach:
assume a fixed message

(a tekst, or an image, for example),
how long is the shortest program 

that will reproduce the message?

Andrei Kolmogorov 
Source: http://www.mi.ras.ru

Kolmogorov, A. (1968). Logical basis for information theory and 
probability theory. IEEE Transactions on Information Theory, 
14(5), 662-664.





H(x) = min
P→x

length(P)                                                                      

P1 = print 
(“aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
”);
P1 →
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

P2 = for(int i=0;i<90;i++)print("a");
P2 →
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

length(P1) = 100

length(P2) = 32



HA(x) ≤ HA’(x) + CA’

From Kolmogorov, 1968, 
simplified, no  y,  LF

Kolmogorov, A. (1968). Logical basis for information theory and probability theory. 
IEEE Transactions on Information Theory, 14(5), 662-664.



Example (Mandelbrot):
• simple program
• fascinating complexity
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