
 1/6

NETLOGO 6.0 – QUICK GUIDE
Luis R. Izquierdo (http://luis.izqui.org)

Agents
The NetLogo world is made up of agents. Agents are beings that can follow instructions. There are
four types of agents:

§ Turtles. Turtles are agents that move around in the world.
§ Patches: The world is two-dimensional and is divided up into a grid of patches. Each patch

is a square piece of "ground" over which turtles can move.
§ Links: Links are agents that connect two turtles. Links can be directed (from one turtle to

another turtle) or undirected (one turtle with another turtle).
§ The observer: The observer does not have a location –you can imagine it as looking out

over the world of turtles, links and patches.

Instructions
Instructions tell agents what to do. Three characteristics are useful to remember about instructions:

a) Whether the instruction is implemented by the user (procedures), or whether it is built into
NetLogo (primitives). Once you define a procedure, you can use it elsewhere in your
program. The NetLogo Dictionary has a complete list of built-in instructions (i.e. primitives).

to setup ;; comments are written after semicolon(s)
 clear-all ;; clear everything
 create-turtles 10 ;; make 10 new turtles
end ; (one semicolon is enough, but I like two)

In this program, setup is a procedure (since it is implemented by us), whereas clear-all
and create-turtles are both primitives (they are built into NetLogo). Note that primitives
are nicely colored, and you can click on them and press F1 to see their syntax, functionality,
and examples. If you like, copy and paste the code above to see all this for yourself.

b) Whether the instruction produces an output (reporters) or not (commands).

o A reporter computes a result and reports it. Most reporters are nouns or noun phrases
(e.g. “average-wealth”, “most-popular-girl”). These names are preceded by the keyword
to-report. The keyword end marks the end of the instructions in the procedure.

to-report average-wealth ;; this reporter returns the
 report mean [wealth] of turtles ;; average wealth in the
end ;; population of turtles

o A command is an action for an agent to carry out. Most commands begin with verbs
(e.g. "create", "die", "jump", "inspect", "clear"). These verbs are preceded by the
keyword to (instead of to-report). The keyword end marks the end of the
instructions in the procedure.

to go
 ask turtles [
 forward 1 ;; all turtles move forward one step
 right random 360 ;; ...and turn a random amount
]
end

c) Whether the instruction takes an input (or several inputs) or not. Inputs are values that the
instruction uses in carrying out its actions.

to-report absolute-value [number] ;; number is the input
 ifelse number >= 0 ;; if number is already non-negative
 [report number] ;; return number (a non-negative value).
 [report (- number)] ;; Otherwise, return the opposite, which
end ;; is then necessarily positive.

 2/6

Variables
Variables are places to store values (such as numbers). A variable can be a global variable, a
turtle variable, a patch variable, a link variable, or a local variable (local to a procedure). To
change the value of a variable you can use the set command (If you don't set the variable to any
value, it starts out storing a value of zero).

a) Global variables: If a variable is a global variable, there is only one value for the variable,
and every agent can access it. You can declare a new global variable either:
in the Interface tab –by adding a switch, a slider, a chooser or an input box–
or in the Code tab –by using the globals keyword at the beginning of your code, like this:

globals [number-of-trees]

b) Turtle, patch, and link variables: Each turtle has its own value for every turtle variable,
each patch has its own value for every patch variable, and each link has its own value for
every link variable. Turtle, patch, and link variables can be built-in or defined by the user.

§ Built-in variables: For example, all turtles and all links have a color variable, and
all patches have a pcolor variable. If you set this variable, the corresponding turtle,
link or patch changes color. Other built-in turtle variables are xcor, ycor, and
heading. Other built-in patch variables include pxcor and pycor. Other built-in
link variables are end1, end2, and thickness. You can find the complete list in
the NetLogo Dictionary.

§ User-defined turtle, patch and link variables: You can also define new turtle, patch
or link variables using the turtles-own, patches-own, and links-own
keywords respectively, like this:
turtles-own [energy] ;; each turtle has its own energy
patches-own [roughness] ;; each patch has its own roughness
links-own [strength] ;; each link has its own strength

c) Local variables: A local variable is defined and used only in the context of a particular
procedure or part of a procedure. To create a local variable, use the let command. You
can use this command anywhere. If you use it at the top of a procedure, the variable will
exist throughout the procedure. If you use it inside a set of square brackets, for example
inside an ask, then it will exist only inside those brackets.
to swap-colors [turtle1 turtle2] ;; turtle1 and turtle2 are inputs
 let temp ([color] of turtle1) ;; store the color of turtle1 in temp
 ask turtle1 [set color ([color] of turtle2)]
 ;; set turtle1’s color to turtle2’s color
 ask turtle2 [set color temp]
 ;; now set turtle2’s color to turtle1’s (original) color
end ;; (which was conveniently stored in local variable “temp”).

Setting and reading the value of variables
Global variables can be read and set at any time by any agent. Every agent has direct access to
her own variables, both for reading and setting. Sometimes you will want an agent to read or set a
different agent's variable; to do that, you can use ask (which is explained in further detail later):

ask turtle 5 [show color] ;; print turtle 5’s color
ask turtle 5 [set color blue] ;; turtle 5 becomes blue

You can also use of to make one agent read another agent’s variable. of is written in between the
variable name and the relevant agent (i.e. [reporter] of agent). Example:

show [color] of turtle 5 ;; same as the first line in the code above

Finally, a turtle can read and set the variables of the patch it is standing on directly, e.g.

ask turtles [set pcolor red]

 3/6

The code above causes every turtle to make the patch it is standing on red. (Because patch
variables are shared by turtles in this way, you cannot have a turtle variable and a patch variable
with the same name –e.g. that is why we have color for turtles and pcolor for patches).

Ask
NetLogo uses the ask command to specify commands that are to be run by turtles, patches or
links. Usually, the observer uses ask to ask all turtles or all patches to run commands. Here's an
example of the use of ask syntax in a NetLogo procedure:

to setup
 clear-all ;; clear everything
 create-turtles 100 ;; create 100 new turtles with random heading
 ask turtles
 [set color red ;; turn them red
 forward 50] ;; make them move 50 steps forward
 ask patches
 [if (pxcor > 0) ;; patches with pxcor greater than 0
 [set pcolor green]] ;; turn green
end

You can also use ask to have an individual turtle, patch or link run commands. The reporters
turtle, patch, link, and patch-at are useful for this technique. For example:

to setup
 clear-all ;; clear the world
 create-turtles 3 ;; make 3 turtles
 ask turtle 0 [fd 10] ;; tell the first one to go forward 10 steps
 ask turtle 1 ;; ask the second turtle (with who number 1)
 [set color green] ;; ...to become green
 ask patch 2 -2 ;; ask the patch at (2,-2)...
 [set pcolor blue] ;; ...to become blue
 ask turtle 0 ;; ask the first turtle (with who number 0)
 [create-link-to turtle 2] ;; to link to turtle with who number 2
 ask link 0 2 ;; tell the link between turtle 0 and 2...
 [set color blue] ;; ...to become blue
 ask turtle 0 ;; ask the turtle with who number 0
 [ask patch-at 1 0 ;; ...to ask the patch to her east
 [set pcolor red]] ;; ...to become red
end

Lists
In the simplest models, each variable holds only one piece of information, usually a number or a
string. Lists let you store multiple pieces of information in a single variable by collecting those
pieces of information in a list. Each value in the list can be any type of value: a number, a string, an
agent, an agentset, or even another list.

Constant lists
You can make a list by simply putting the values you want in the list between brackets, e.g.:

set my-list [2 4 6 8]

Building lists on the fly
If you want to make a list in which the values are determined by reporters, as opposed to being a
series of constants, use the list reporter. The list reporter accepts two other reporters, runs
them, and reports the results as a list.

set my-random-list list (random 10) (random 20)

To make shorter or longer lists, you can use the list reporter with fewer or more than two inputs,
but in order to do so, you must enclose the entire call in parentheses, e.g.:

show (list random 10)
show (list (random 10) (turtle 3) "a" 30) ;; inner () are not necessary

 4/6

The of primitive lets you construct a list from an agentset (i.e. a set of agents). It reports a list
containing each agent's value for the given reporter (syntax: [reporter] of agentset).

set fitness-list ([fitness] of turtles)
 ;; list containing the fitness of each turtle (in random order)
show [pxcor * pycor] of patches

See also: n-values, range, sentence and sublist.

Reading and changing list items
List items can be accessed using first, last and item. The first element of a list is item 0.
Technically, lists cannot be modified, but you can construct new lists based on old lists. If you want
the new list to replace the old list, use set. For example:

set my-list [2 7 5 "Bob" [3 0 -2]] ;; my-list is now [2 7 5 "Bob" [3 0 -2]]
set my-list replace-item 2 my-list 10 ;; my-list is now [2 7 10 "Bob" [3 0 -2]]

See: but-first, but-last, fput, lput, length, shuffle, position and remove-item.

Iterating over lists
To apply a function (procedure) on each item in a list, you can use foreach or map. Procedures to
be applied are usually defined using anonymous procedures, with the following syntax:
 [[input-1 input-2 …] -> code of the procedure] ;; new, since NetLogo 6.0

The names assigned to the inputs of the procedure (i.e. input-1 and input-2 above) may be used
within the code of the procedure just like you would use any other variable within scope. You can
use any name you like for these local variables (complying with the usual restrictions). foreach is
used to run a command on each item in a list. It takes as inputs the list and the command, e.g.:

foreach [1.2 4.6 6.1] [[n] -> show (word n " rounded is " round n)]
 output: "1.2 rounded is 1" "4.6 rounded is 5" "6.1 rounded is 6"

map is similar to foreach, but it is a reporter (it returns a list). It takes as inputs a list and a
(reporter) procedure; and returns an output list containing the results of applying the reporter to
each item in the input list. As in foreach, procedures can be anonymous.
show map [[element] -> round element] [1.2 2.2 2.7] ;; prints [1 2 3]

Simple uses of foreach, map, n-values, and related primitives can be written more concise.
show map round [1.2 2.2 2.7] ;; (see Anonymous procedures in Programming Guide)

Both foreach and map can take multiple lists as input; in that case, the procedure is run once for
the first items of all input lists, once for the second items, and so on.
show (map [[el1 el2] -> el1 + el2] [1 2 3] [10 20 30]) ;; prints [11 22 33]
show (map + [1 2 3] [10 20 30]) ;; a shorter way of writing the same

See also: reduce, filter, sort-by, sort-on and -> (anonymous procedure).

Agentsets
An agentset is a set of agents; all agents in an agentset must be of the same type (i.e. turtles,
patches, or links). An agentset is not in any particular order. In fact, it’s always in a random order1.
What's powerful about the agentset concept is that you can construct agentsets that contain only
some agents. For example, all the red turtles, or the patches with positive pxcor, or all the links
departing from a certain agent. These agentsets can then be used by ask or by various reporters
that take agentsets as inputs, such as one-of, n-of, with, with-min, max-one-of, etc. The
primitive with and its siblings are very useful to build agentsets. Here are some examples:

turtles with [color = red] ;; all red turtles
patches with [pxcor > 0] ;; patches with positive pxcor
[my-out-links] of turtle 0 ;; all links outgoing from turtle 0
turtles in-radius 3 ;; all turtles three or fewer patches away
other turtles-here with-min [size] ;; other turtles with min size on my patch
(patch-set self neighbors4) ;; von Neumann neighborhood of a patch

1 If you want agents to do something in a fixed order, you can make a list of the agents instead.

 5/6

Once you have created an agentset, here are some simple things you can do:

§ Use ask to make the agents in the agentset do something.
§ Use any? to see if the agentset is empty.
§ Use all? to see if every agent in an agentset satisfies a condition.
§ Use count to find out exactly how many agents are in the set.

Here are some more complex things you can do:

ask one-of turtles [set color green]
 ;; one-of reports a random agent from an agentset
ask (max-one-of turtles [wealth]) [donate]
 ;; max-one-of agentset [reporter] reports an agent in the
 ;; agentset that has the highest value for the given reporter
show mean ([wealth] of turtles with [gender = male])
 ;; Use of to make a list of values, one for each agent in the agentset.
show (turtle-set turtle 0 turtle 2 turtle 9 turtles-here)
 ;; Use turtle-set, patch-set and link-set reporters to make new
 ;; agentsets by gathering together agents from a variety of sources
show (turtles with [gender = male]) = (turtles with [wealth > 10])
 ;; Check whether two agentsets are equal using = or !=
show member? (turtle 0) turtles with-min [wealth]
 ;; Use member? to see if an agent is a member of an agentset.
if all? turtles [color = red] ;; use ?all to see if every agent in the
 [show "every turtle is red!"] ;; agentset satisfies a certain condition
ask turtles [create-links-to other turtles-here ;; on same patch as me, not me,
 with [color = [color] of myself]] ;; and with same color as me.
show [([color] of end1) - ([color] of end2)] of links ;; check everything’s OK

Synchronization
When you ask a set of agents to run more than one command, each agent must finish all the
commands in the block before the next agent starts. One agent runs all the commands, then the
next agent runs all of them, and so on. As mentioned before, the order in which agents are chosen
to run the commands is random. To be clear, consider the following code:

ask turtles
 [forward random 10 ;; move forward a random number of steps (0–9)
 wait 0.5 ;; wait half a second
 set color blue] ;; set your color to blue

The first (randomly chosen) turtle will move forward some steps, she will then wait half a second,
and she will finally set her color to blue. Then, and only then, another turtle will start doing the
same; and so on until all turtles have run the commands inside ask without being interrupted by
any other turtle. The order in which turtles are selected to run the commands is random. If you
want all turtles to move, and then all wait, and then all become blue, you can write it this way:

ask turtles [forward random 10]
ask turtles [wait 0.5] ;; note that you will have to wait
ask turtles [set color blue] ;; (0.5 * number-of-turtles) seconds

Finally, you can make agents execute a set of commands in a certain order by converting the
agentset into a list. There are three primitives that help you do this: sort, sort-by and sort-on.

set my-list-of-agents sort-by [[t1 t2] -> [size] of t1 < [size] of t2] turtles
 ;; This sets my-list-of-agents to a list of turtles sorted in
 ;; ascending order by their turtle variable size.

foreach my-list-of-agents [[ag] ->
 ask ag [;; each agent undertakes the list of commands
 forward random 10 ;; (forward, wait, and set) without being
 wait 0.5 ;; interrupted, i.e. the next agent does not
 set color blue ;; start until the previous one has finished.
]]

 6/6

Ticks and Plotting
In most NetLogo models, time passes in discrete steps called "ticks". NetLogo includes a built-in
tick counter so you can keep track of how many ticks have passed. The current value of the tick
counter is shown above the view. Note that –since NetLogo 5.0– ticks and plots are closely related.

You can write code inside the plots. Every plot and each of its pens have setup and update code
fields where you can write commands. All these fields must be edited directly in each plot –i.e. in
the Interface, not in the Code tab. To execute the commands written inside the plots, you can use
setup-plots and update-plots, which run the corresponding fields in every plot and in every
pen. However, in models that use the tick counter, these two primitives are not normally used
because they are automatically triggered by tick-related commands, as explained below.

To use the tick counter, first you must reset-ticks; this command resets the tick counter to
zero, sets up all plots (i.e. triggers setup-plots), and then updates all plots (i.e. triggers
update-plots); thus, the initial state of the world is plotted. Then, you can use the tick
command, which advances the tick counter by one and updates all plots.

See also: plot, plotxy, and ticks.

Skeleton of many NetLogo Models
globals […] ;; global variables (also defined with sliders, …)
turtles-own […] ;; user-defined turtle variables (also <breeds>-own)
patches-own […] ;; user-defined patch variables
links-own […] ;; user-defined link variables (also <breeds>-own)
…
to setup
 clear-all … setup-patches … setup-turtles … reset-ticks
end
…
to go
 conduct-observer-procedure …
 ask turtles [conduct-turtle-procedure] …
 ask patches [conduct-patch-procedure] …
 tick ;; this will update every plot and every pen in every plot
end
…
to-report a-particular-statistic
 … report the-result-of-some-formula
end

Common Primitives
Turtle-related: create-turtles, die, forward, move-to, my-links, myself, nobody, of, other, other-end,
patch-here, right, self, setxy, turtle, turtle-set, turtles, turtles-at, turtles-here, turtles-on, turtles-own.

Patch-related: clear-patches, distance, import-pcolors, myself, neighbors, neighbors4, nobody, of,
other, patch, patch-at, patch-set, patches, patches-here, patches-own, sprout, turtles-here.

Link-related: both-ends, clear-links, create-link-from, create-link-to, create-link-with, in-link-
neighbor?, in-link-neighbors, in-link-from, is-directed-link?, link, link-length, link-neighbors, link-set,
link-with, my-in-links, my-links, other-end, out-link-neighbor?, out-link-neighbors, out-link-to, tie.

Agentset primitives: all?, any?, ask, count, in-radius, is-agentset?, max-n-of, max-one-of, min-n-
of, min-one-of, n-of, neighbors, of, one-of, other, sort, sort-by, sort-on, with, with-max, with-min.

Control flow and logic primitives: and, ask, foreach, if, ifelse, ifelse-value, let, loop, map, not, or,
range, repeat, report, set, stop, startup, wait, while, with-local-randomness, xor.

World primitives: clear-all, clear-patches, clear-turtles, display, import-drawing, import-pcolors,
max-pxcor, min-pxcor, no-display, random-pxcor, reset-ticks, tick, ticks, world-width, world-height.

