Dynamic systems and their behaviour

Dr. F.L.M. Delbressine

\bullet.
 Literature

o J. Sanny and W. Moebs, University Physics, Wm. C. Brown Publishers
o L. Meirovitch, Fundamentals of vibrations, Mc.Graw-Hill.
o S.S. Rao, Mechanical Vibrations, AddisonWesley

- Wikipedia:
http://en.wikipedia.org/wiki/Vibration\#Free_v ibration_without_damping

Zero order systems

$$
a_{0} \cdot \operatorname{Out}(t)=b_{0} \cdot \operatorname{In}(t)
$$

$$
\frac{\operatorname{Out}(t)}{\operatorname{In}(t)}=\frac{b_{0}}{a_{0}}=k
$$

o Examples:

- Resistor (ideal): $\mathrm{V}(\mathrm{t})=\mathrm{R}^{*} \mid(\mathrm{t})$
- Spring (ideal): $F(t)=k^{*} x(t)$

First order systems

$$
\begin{aligned}
& a_{1} \cdot \frac{d O u t(t)}{d t}+a_{0} \cdot \operatorname{Out}(t)=b_{0} \cdot \operatorname{In}(t) \\
& \frac{a_{1}}{a_{0}} \cdot \frac{d O u t(t)}{d t}+\operatorname{Out}(t)=\frac{b_{0}}{a_{0}} \cdot \operatorname{In}(t) \\
& \frac{a_{1}}{a_{0}}=\text { time constant }[\mathrm{sec}]
\end{aligned}
$$

- Examples (energy storing):
- Temperature sensor put in a heated bath
- Room heating
- (Dis)charging battery

Temperature sensor put in a cooled bath

$Q_{\text {Add }}-Q_{\text {Loss }}=Q_{\text {Heat-up }}$
$Q_{\text {Loss }}=0$
$Q_{A d d}=\alpha A\left(T_{e}-T_{t}\right)$
$Q_{\text {Heat-up }}=m C \frac{d T_{t}}{d t}$

$\alpha A\left(T_{e}-T_{t}\right)=m C \frac{d T_{t}}{d t}=-m C \frac{d\left(T_{e}-T_{t}\right)}{d t}$

Solution

 (for the step response)$$
\begin{aligned}
& T_{e}-T_{t}=\left(T_{e}-T_{t_{o}}\right) * e^{\frac{-t}{\tau}} \\
& T_{t}=T_{e}-\left(T_{e}-T_{t_{o}}\right) * e^{\frac{-t}{\tau}} \\
& \tau=\frac{m^{*} c}{\alpha^{*} A}
\end{aligned}
$$

$$
T_{t_{o}}=\text { sensor temperature at } t=0
$$

Example: room temperature in Simulink

Step response first order system

Response to sine input

$$
\begin{aligned}
& \tau \frac{d O u t(t)}{d t}+\operatorname{Out}(t)=k \cdot \operatorname{In}(t) \\
& \operatorname{In}(t)=I_{0} e^{s t}
\end{aligned}
$$

Assume: $\operatorname{Out}(t)=O_{0} e^{s t}$

$$
\begin{aligned}
& \tau s O_{0} e^{s t}+O_{0} e^{s t}=O_{0} e^{s t}(\tau s+1)=k \cdot I_{0} e^{s t} \\
& \frac{\operatorname{Out}(t)}{\operatorname{In}(t)}=\frac{k}{\tau s+1} \\
& s=i \cdot \omega
\end{aligned}
$$

$$
\frac{\operatorname{Out}(t)}{\operatorname{In}(t)}=\frac{k}{\tau \cdot i \cdot \omega+1}
$$

Second order systems

$$
\begin{aligned}
& a_{2} \cdot \frac{d^{2} O u t(t)}{d t}+a_{1} \cdot \frac{d O u t(t)}{d t}+a_{0} \cdot \operatorname{Out}(t)=b_{0} \cdot \operatorname{In}(t) \\
& \frac{a_{2}}{a_{0}} \cdot \frac{d^{2} O u t(t)}{d t}+\frac{a_{1}}{a_{0}} \cdot \frac{d O u t(t)}{d t}+\operatorname{Out}(t)=\frac{b_{0}}{a_{0}} \cdot \operatorname{In}(t) \\
& \sqrt{\frac{a_{2}}{a_{0}}}=\omega_{0} \text { eigenfrequency of the system } \\
& \gamma=\frac{a_{1}}{2 \sqrt{a_{0} \cdot a_{2}}} \text { dampings factor }
\end{aligned}
$$

-.	Tacoma Narrows bridge

TU/e

Free vibrations, unforced

Simple Harmonic Motion

$$
F(x)=-k \cdot x
$$

Picture from Wikipedia

Equations of Simple Harmonic Motion

Newton's law, force balance: $-k \cdot x=m \cdot a$

$$
a=\frac{d v}{d t}=\frac{d}{d t}\left(\frac{d x}{d t}\right)=\frac{d^{2} x}{d t^{2}}
$$

$$
\frac{d^{2} x}{d t^{2}}+\frac{k}{m} x=0
$$

$$
\begin{aligned}
& \text { Solution: } x(t)=A \cdot \sin \left(\sqrt{\frac{k}{m}} \cdot t+\phi\right) \\
& \frac{d^{2} x}{d t^{2}}+\frac{k}{m} x=0
\end{aligned}
$$

$$
\frac{d x}{d t}=A \cdot \sqrt{\frac{k}{m}} \cdot \cos \left(\sqrt{\frac{k}{m}} \cdot t+\phi\right)
$$

$$
\frac{d^{2} x}{d t^{2}}=-A \cdot \frac{k}{m} \cdot \sin \left(\sqrt{\frac{k}{m}} \cdot t+\phi\right)
$$

$$
-A \cdot \frac{k}{m} \cdot \sin \left(\sqrt{\frac{k}{m}} \cdot t+\phi\right)+\frac{k}{m} \cdot A \cdot \sin \left(\sqrt{\frac{k}{m}} \cdot t+\phi\right)=0
$$

Parameters of Simple Harmonic Motion

$$
x(t)=A \cdot \sin (\omega \cdot t+\phi)
$$

Angular fequevenc: $\omega=\sqrt{\frac{k}{m}}$ in rad/s Frequenc: $f=\frac{\omega}{2 \pi}$
Phase: $\omega \cdot t+\phi$ in rad
Amplitude: A
Period time: $T=\frac{2 \pi}{\omega}=\frac{1}{f}$ Time required for one complete oscillation.

Solution graphically

Position. $\mathrm{A}=2.1 \mathrm{phi}=0.05^{*} \mathrm{pi}$

Circular Motion and Simple Harmonic Motion

$$
\begin{aligned}
& x(t)=r \cdot \cos (\theta(t)) \\
& y(t)=r \cdot \sin (\theta(t)) \\
& \text { Stel }: \theta(t)=\omega \cdot t+\phi \\
& x(t)=r \cdot \cos (\omega \cdot t+\phi) \\
& y(t)=r \cdot \sin (\omega \cdot t+\phi)
\end{aligned}
$$

Grandfather clock

- The oscillations of the pendulum was used to keep time

A Simple Pendulum,

Sum of all torques around rotation center:
$-m g l \sin \theta=m l^{2} \frac{d^{2} \theta}{d t^{2}}$
Assume small amplitudes of θ
(Taylor expansion) $\sin \theta=\theta$

$$
\begin{aligned}
& -m g l \theta=m l^{2} \frac{d^{2} \theta}{d t^{2}} \\
& \frac{d^{2} \theta}{d t^{2}}+\frac{g}{l} \theta=0
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \theta(t)=A \cdot \sin (\omega \cdot t+\phi) \\
& A=\text { amplitude } \\
& \phi=\text { phase constant }
\end{aligned}
$$

$$
\omega=\text { angular frequency }=\sqrt{\frac{g}{l}}
$$

Compare with: $x(t)=A \cdot \sin (\omega \cdot t+\phi) \vee \omega=\sqrt{\frac{k}{m}}$ for translatory vibrations

Damped Oscillations

- Real systems have damping for instance through friction.
- Since friction is a dissipative force the amplitude of oscillations must decrease with time.
- The frictional force is often caused by the medium in which the oscillating body is immersed.

-.	Example: Gas damper

TU/e

-•
 Mass-spring-damper system

TU/e

Damped oscillations

$$
F_{R=}=-b \cdot v=-b \cdot \frac{d x}{d t}
$$

$b=$ damping constant
Newton's second law :
$\sum F_{x}=m \cdot a_{x}$
$-k \cdot x-b \cdot \frac{d x}{d t}=m \cdot \frac{d^{2} x}{d t^{2}}$
$m \cdot \frac{d^{2} x}{d t^{2}}+b \cdot \frac{d x}{d t}+k \cdot x=0$

Complex numbers

Solution using complex variables

Suppose the solution is of the form:

$$
\begin{aligned}
& x(t)=A \cdot e^{(s \cdot t)} \\
& v(t)=s \cdot A \cdot e^{(s \cdot t)} \\
& a(t)=s^{2} \cdot A \cdot e^{(s \cdot t)}
\end{aligned}
$$

$$
\begin{aligned}
& m \cdot \frac{d^{2} x}{d t^{2}}+b \cdot \frac{d x}{d t}+k \cdot x=0 \\
& \left(s^{2} \cdot m+s \cdot b+k\right) A \cdot e^{(s t)}=0 \\
& s^{2}+s \cdot \frac{b}{m}+\frac{k}{m}=0 \\
& \omega_{0}=\sqrt{\frac{k}{m}} \\
& \gamma=\frac{b}{2 m}
\end{aligned}
$$

$$
s^{2}+2 \cdot \gamma \cdot s+\omega_{0}^{2}=0
$$

Quadratieq.

$$
\begin{aligned}
& s_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-2 \cdot \gamma \pm \sqrt{4 \gamma^{2}-4 \omega_{0}^{2}}}{2}= \\
& s_{1,2}=-\gamma \pm \sqrt{\gamma^{2}-\omega_{0}^{2}}
\end{aligned}
$$

3 cases

Underdamped : $\gamma<1$

$$
\begin{aligned}
& \omega_{0}=\sqrt{\frac{k}{m}}>\gamma=\frac{b}{2 m} \\
& x(t)=A \cdot e^{-\gamma t} \cos \left(\omega^{\prime} t+\phi\right) \\
& \omega^{\prime}=\sqrt{\omega_{0}^{2}-\gamma^{2}}
\end{aligned}
$$

$$
\zeta=\frac{b}{2 \sqrt{k \cdot m}}
$$

Critically damped

$$
\gamma=1
$$

$$
x(t)=e^{-\gamma \cdot t}\left(A_{1} \cdot t+A_{2}\right)
$$

Overdamped

$$
x(t)=A e^{-\gamma_{1} t}+A_{2} e^{-\gamma_{2} t}
$$

$$
-\gamma_{1,2}=\frac{b_{ \pm}\left(b^{2}-4 k m\right)^{1 / 2}}{2 m}
$$

Forced Oscillations and Resonance

Fourier series

- Each periodic function (piecewise smooth, continuous and periodic) can be rewritten as:

$$
\begin{aligned}
& f(t)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cdot \cos \left(\omega_{n} \cdot t\right)+b_{n} \cdot \sin \left(\omega_{n} \cdot t\right)\right] \\
& \omega_{n}=n \cdot \frac{2 \pi}{T} \\
& a_{n}=\frac{2}{T} \int_{t_{1}}^{t_{2}} f(t) \cdot \cos \left(\omega_{n} \cdot t\right) d t \\
& b_{n}=\frac{2}{T} \int_{t_{1}}^{t_{2}} f(t) \cdot \sin \left(\omega_{n} \cdot t\right) d t
\end{aligned}
$$

Example sawtooth

harmonics: 1

Square Wave: Generated by Harmonics

Frequency Spectrum: Square Wave

Thus

- When one knows how a system reacts to sine and cosine functions one knows how a system reacts to any periodic function!
o Remark: A cosine function is a sine function with a phase difference of $\pi / 2$
- Mathematical software packages implement Fourier Transforms
- Discrete Fourier Transform (DFT)
- Fast Fourier Transform (FFT)
- Matlab:
- Help search Fourier
- Mathematica
- http://demonstrations.wolfram.com/ExamplesOfFo urierSeries/

-•
 Mass-spring-damper system

TU/e

Equation forced vibration

$$
\begin{aligned}
& \sum F_{x}=m \cdot a_{x} \\
& F(t)=F_{\text {excitation }} \cdot \cos \left(\omega_{\text {excitation }} \cdot t\right) \\
& -k \cdot x-b \cdot \frac{d x}{d t}+F_{\text {excitation }} \cdot \cos \left(\omega_{\text {excitation }} \cdot t\right)=m \cdot \frac{d^{2} x}{d t^{2}} \\
& m \cdot \frac{d^{2} x}{d t^{2}}+b \cdot \frac{d x}{d t}+k \cdot x=F_{\text {excitation }} \cdot \cos \left(\omega_{\text {excitation }} \cdot t\right)
\end{aligned}
$$

Solution

$$
x(t)=X \cdot \cos \left(\omega_{\text {excitation }} \cdot t-\phi\right)
$$

$$
\zeta=\frac{b}{2 \sqrt{k \cdot m}}
$$

$$
X=\frac{F_{\text {excitation }}}{k} \frac{1}{\sqrt{\left(1-r^{2}\right)^{2}+(2 \cdot \zeta \cdot r)^{2}}}
$$

$$
r=\frac{\omega_{\text {excitation }}}{\omega_{\text {eigen }}}=\frac{f_{\text {excitation }}}{f_{\text {eigen }}}
$$

$$
\phi=\arctan \left(\frac{2 \cdot \zeta \cdot r}{1-r^{2}}\right)
$$

Forced response massspring damper system

Frequence response function of a mass spring damper system

- - Input - FRF - Output

Do not forget the phase change! Freq. dependent

Simulink Mass-SpringDamper Example

Simulink example: MassaVeerDemperStep

Equivalent systems

Translational mechanics	Series RLC
Position x	Current i
Mass m	Inductance L
Spring k	Elastance $1 / \mathrm{C}$
Damper b	Resistance R
Drive Force $\mathrm{F}(\mathrm{t})$	di/dt

Series RLC:

$$
\begin{aligned}
& f=\frac{1}{2 \pi} \sqrt{\frac{1}{L \cdot C}} \\
& L \cdot \ddot{i}+R \cdot \dot{i}+i / C=\ddot{e}
\end{aligned}
$$

Translational mechanics:

$$
\begin{aligned}
& f=\frac{1}{2 \pi} \sqrt{\frac{k}{m}} \\
& m \cdot \ddot{x}+b \cdot \dot{x}+k \cdot x=F(t)
\end{aligned}
$$

Realistic systems:

- Sum of N second order systems, $N \geq 0$
- Sum of M first order systems, $M \geq 0$
- Sum of P zero order systems, $P \geq 0$

The typical system responses, in the time domain, to an input step in the time domain.

SUMMARIES

1th order system response to step in time

$2^{\text {nd }}$ order system response to block function in time

