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How to measure complexity?

e Shannon’s aproach:
assume a source which produces random messages,
how many bits do we need on average to code a message?

A Mathematical Theory of Communication', Bell System Technical Claude Shannon in 1948
Journal, vol. 27, pp. 379-423 & 623-656, 1948

Source: www.i-programmer.info

e Kolmogorov’s approach:
assume a fixed message
(a tekst, or an image, for example),
how long is the shortest program
that will reproduce the message?

Kolmogorov, A. (1968). Logical basis for information theory and
probability theory. IEEE Transactions on Information Theory,
14(5), 662-664.

Andrei Kolmogorov
Source: http://www.mi.ras.ru



Examples:

“010011010110100110010011100101001001011001”

“0000000000000100000000000001000000000000071”

int tm(int i, int N){int im

“alil[j] = (tm(i

i%(2*N); return im<N? im : (2*N)-im;}

,N)+1000+1 - tm(j-1,N+1))%4 <2? true : false;”




Shannon’s aproach:

Assume source X
with alphabet {A,B,C,D}
and probabilities P(A)=0.5, P(B) = 0.25, P(C)=0.125, P(D) = 0.125

Information per letter

H(A) =—2log 0.5 =—(—1) =1 bit
H(B) =—2log 0.25 = — (= 2) = 2 bit
H(C) = —2%log 0.125 =— (- 3) = 3 bit
H(D) =—?log 0.125 =— (- 3) = 3 bit

Complexity of this source
HX)=%.1+%.2+%.3+%.3=1%=1.75 bit per letter
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Shannon’S aproach: SOURCE TRANSMITTER RECEIVER DESTINATION
] SIGNAL REF('ET\II?IAE e
Claim: we can code these letters in MESSAGE MESSAGE

1.75 bit (on average)

NOISE
SOURCE

“Huffman coding”

A 9 O Source: A Mathematical Theory of Communication™,
Bell System Technical Journal, vol. 27, pp. 379-423

B 9 10 & 623-656, 1948
C > 110
D> 111

Fig. | —Schematic diagram of a general communication system.

BABADACA <10010011101100
DDDDDDDD < 11111711111111711111111111



H(X) = 3. -p; *log p;

Special case:
two-letter alphabet
P(A)=p,=p

P(B) = p, =(1-p)
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H(X) =—p ?log p— (1 - p)*log (1 - p) ,

Fig. 7—Entropy in the case of two possibilities with probabilities p and (1 — p).

Source: A Mathematical Theory of Communication',
Bell System Technical Journal, vol. 27, pp. 379-423
& 623-656, 1948



[II. THE SERIES OF APPROXIMATIONS TO ENGLISH

To give a visual idea of how this series of processes approaches a language, typical sequences in the approxima-
tions to English have been constructed and are given below. In all cases we have assumed a 27-symbol “alphabet,”
the 26 letters and a space.

1. Zero-order approximation (symbols independent and equiprobable).
XFOML RXKHRIJFFJUJ ZLPWCFWKCYJ FFIEY VKCQSGHYD QPAAMKBZAACIBZLHJQD.
2. First-order approximation (symbols independent but with frequencies of English text).

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA NAH
BRL.

3. Second-order approximation (digram structure as in English).

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TUCOOWE
AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE.

4. Third-order approximation (trigram structure as in English).

INNO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONSTURES
OF THE REPTAGIN IS REGOACTIONA OF CRE.

Source: A Mathematical Theory of Communication',
Bell System Technical Journal, vol. 27, pp. 379-423
& 623-656, 1948



How to measure complexity, 2nd approach?

e Kolmogorov’s approach:
assume a fixed message
(a tekst, or an image, for example),
how long is the shortest program
that will reproduce the message?

Kolmogorov, A. (1968). Logical basis for information theory and
probability theory. IEEE Transactions on Information Theory, Andrei Kolmogorov

14(5), 662-664. Source: http://www.mi.ras.ru



Logical Basis for Information Theory
and Probability Theory

ANDRELI N, KOLMOGOROV

Absiract—A new logical basis for information theory as well as
probability theory is proposed, based on computing complexity.

Sucrion I

E SHALL be concerned with the main basic

%;&# concepts of information theory, beginning with

the traditional concept of the conditional entropy

of © when the value of y is known, H{z | %), which can

be interpreted as the quantity of information required

for computing (“programming’) the value z when the

value y is already known. By using ¢ to denote a particular
given known value, we get the unconditional entropy

H(z | ¢) = H(z).

Information given by y concerning the value of = can,
as 1s well known, be expressed:

Iz |y = H(z) — H(z | y).
It is evident that
Iz | x) = H(z).

The ordinary definition of entropy uses probability
concepts, and thus does not pertain to individual values,
but to random values, ie., to probability distributions
within a given group of values. In order to stress this
difference, we will denote random values by Greek letters,

cepts. I believe that the need for attaching definite mean-
ing to the expressions H(z | ) and I(z | %), in the case
of individual values z and y that are not viewed as a
result of random tests with a definite law of distribution,
was realized long ago by many who dealt with information
theory.

As far as I know, the first paper published on the idea
of revising information theory so as to satisfy the above
conditions was the article by Solomonov [1]. I came to
gimilar conclusions, before becoming aware of Solomonov’s
work, in 1063-1964, and published my first article on the
subject [2] in early 1965. A young Bwedish mathematician,
Martin-Lof, who worked in Moscow during 1964-1965,
began developing this concept. His lectures [3] which he
gave in Erlangen in 1966 represent a better introduetion
to the subjeet of my paper.

The meaning of the new definition iz very simple.
Entropy H(zx | y) is the minimal length of the recorded
sequence of zeros and ones of a “program’ P that permits
construction of the value of z, the value of y being known,

Hiz |y = I(F). (2)

min
ACP, vl =2
This concept is supported by the general theory of “com-
putable’ (partially recursive) functions, ie., by the
theory of algorithms in general. We will return again to
the interpretation of the notation A(P, 4) = =



H(x) = minpexlength(P)
length(P,) = 100

P,=print
(“‘aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
");

P, 2
daaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

/ length(P,) = 32 }
P,=For(int 1=0;1<90;1++)print('a);

P, >
dddddddaddddddaddadaadaddddddadaaddddddadaaaaddddadadaaaa
dddddddddddddddddddddddddddddAdddadddddaddaadaa




An analogous situation exists in the principles of informa-
tion theory. Essentially, it is applicable to large quantities
of information, when the initial information (contained
in the method on which the theory is based) 1s infinitesi-
mal. Our basic formula (1) implies a “universal program-
ming method” A, which exists because there are
programming methods 4 possessing the quahty

Ha(x) £ Hp(x) + Cy

They allow the programming of anything with a pro-
~gram length that exceeds the length of any other pro-
gramming method by not greater than a constant and

is dependent only on this second programming method
and not on values of x

From Kolmogorov, 1968,
simplified, no vy, LF

Kolmogorov, A. (1968). Logical basis for information theory and probability theory.

IEEE Transactions on Information Theory, 14(5), 662-664.



@ mandelbrot_simple

Example (Mandelbrot):
e simple program
e fascinating complexity

B2 mandelbrot_simple | Processing 2.2.1
File Edit Sketch Tools Help

mandelbrot_simple [yl -
Complex F(Complex c, int n){
it (n == @)
return new Complex(®,8);
else { Complex z = F(c,n - 1);
return z.mul(z).add(c);

}

oid setup(){

float zy = 2#xy [ cht - 1.8;

Complex zn = F(new Complex(zx,zy),108);
stroke(zn.modulus() < 2?7 255 : 8,8,8);
point{x,v);
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