
Introduction to

Software Engineering

prof .loe feijs

ID Masters Module

Modeling and Specification in Action

How computer programs are madel

phases of the design process, up to

1950-1960: machine code

1960-1970: high-level language

1970-1980: structured programs

1980-1990: object orientation

1990-2000: component software

2000-2010: software agents

2010-2020: network architecture

Machine languagel

$TEST: PUSHF

 SETST 4

 SETST 3

 SKBIT 15

 CLRST 4

 PUSH 0

 LD 0,MANT

 SKBIT 15

 CLRST 3

 LI 0,0

 SKSTF 4

 SETBIT 0

 SKSTF 3

 SETBIT 1

 ST 0,$STAT

 PULL 0

 PULLF

 RTS

NORM: SKNE 0,$NUL

 JMP $H

 JMP $I

$H: SKNE 1,$NUL

 JMP $J

 JMP $I

$J: LI 2,0

 RTS

$I: PUSHF ETC

Concepts:

•memory

•arithmetic

•logic

•stack

•jumps

average

productivity:2.5

lines per hour

-- Anonymous.

Like the old joke, "He has experience, he wrote over 350 kloc

personally... Then he discovered loops."

High-level languagel

 SUBROUTINE TOASC (N,M,NADE)

C ***************************

C TOASC CONVERTS INTEGER N *

C OF MAX M DIGITS TO ASCII *

C RESULT IN ARRAY NADE *

C****************************

 DIMENSION NADE(M)

 L=N

 I=0

 DO 10 J=1,M

 K=M-J

 I=N/(!)**K)

 NADE(J)=I+48

 N=N-(I*(10**K))

10 CONTINUE

 N=L

 RETURN

 END

Concepts:

•types

•variables

•If-then-else

•for, while, repeat, etc.

•procedures, parameters

average

productivity: 2.5

lines per hour

Structured programsl

procedure straightselection;

 var i,j,k: index;

 x : item;

begin for i := 1 to n-1 do

 begin k := i;

 x := a[i];

 for j := i+1 to n do

 if a[j].key < x.key then

 begin k := j;

 x := a[j]

 end;

 a[k] := a[i];

 a[i] := x;

 end

end

Concepts:

•indentation

•data records

•nested scopes

•elimation of goto

•recursive procedures

•axiomatic theory

average

productivity: 2.5

lines per hour Prof. Edsger Dijkstra,

1930-2002

http://www.acm.org/classics/oct95/

http://www.acm.org/classics/oct95/

Object-orientationl

procedure Painting.pntA;

var

 i : integer;

begin

 self.color := LightGrey;

 self.MaxCell := 1 + random(25);

 for i := 0 to self.MaxCell do begin

 self.Cells[i] := mkCell(self.mkKernelA([]));

 end; {for}

 Delay(100);

end;

procedure Painting.pntB;

var

 i : integer;

begin

 self.color := LightGrey;

 self.MaxCell := 1 + random(50);

 for i := 0 to self.MaxCell do begin

 self.Cells[i] := mkCell(self.mkKernelB([]));

 end; {for}

 Delay(100);

end;

Concepts:

•encapsulation

•inheritance

•polymorphism

average

productivity: 2.5

lines per hour

 Feijs, Matematica e cultura, Venezia, 2006

Sources and drivers of the innovationsphases

of the design process, up to
1950-1960: machine code

1960-1970: high-level language

1970-1980: structured programs

1980-1990: object orientation

1990-2000: component software

2000-2010: software agents

2010-2020: network architecture

developments

based on

language

developments

based on

cooperation and

competition

between programs

calculation

needs

linguistics

mathematics

real-world

analogies

logistics

economics

social

sciences

Metaphor: a program is like a …phases of

machine set-up, up to

1950-1960: machine code

1960-1970: high-level language

1970-1980: structured programs

1980-1990: object orientation

1990-2000: component software

2000-2010: software agent

2010-2020: network architecture

http://en.wikipedia.org/wiki/Image:Jacquard.loom.cards.jpg

Metaphor: a program is like a …phases of

formula, up to

1950-1960: machine code

1960-1970: high-level language

1970-1980: structured programs

1980-1990: object orientation

1990-2000: component software

2000-2010: software agents

2010-2020: network architecture

Metaphor: a program is like a …phases of

step-by-step procedure (algorithm), up to

1950-1960: machine code

1960-1970: high-level language

1970-1980: structured programs

1980-1990: object orientation

1990-2000: component software

2000-2010: software agents

2010-2020: network architecture

Metaphor: a program is like a …phases of

set of real world objects, up to

1950-1960: machine code

1960-1970: high-level language

1970-1980: structured programs

1980-1990: object orientation

1990-2000: component software

2000-2010: software agents

2010-2020: network architecture

Metaphor: a program is like a …phases of

set of hardware components, up to

1950-1960: machine code

1960-1970: high-level language

1970-1980: structured programs

1980-1990: object orientation

1990-2000: component software

2000-2010: software agents

2010-2020: network architecture

Metaphor: a program is like an …phases

agent

1950-1960: machine code

1960-1970: high-level language

1970-1980: structured programs

1980-1990: object orientation

1990-2000: component software

2000-2010: software agents

2010-2020: network architecture

Metaphor: a program is like a …phases

member of a community

1950-1960: machine code

1960-1970: high-level language

1970-1980: structured programs

1980-1990: object orientation

1990-2000: component software

2000-2010: software agents

2010-2020: network architecture

Component software

 Concepts:

•registration

•interface specification

•downward compatibility

•language independence

Software agentsl

 Concepts:

•security

•authentication

•emergent behaviour

•economic and game theory

Multimedia purchasing apparatus Espacenet

http://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODO

C&II=9&ND=3&adjacent=true&locale=en_EP&FT=D&date=20060310

&CC=KR&NR=20060022673A&KC=A

http://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&II=9&ND=3&adjacent=true&locale=en_EP&FT=D&date=20060310&CC=KR&NR=20060022673A&KC=A
http://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&II=9&ND=3&adjacent=true&locale=en_EP&FT=D&date=20060310&CC=KR&NR=20060022673A&KC=A
http://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&II=9&ND=3&adjacent=true&locale=en_EP&FT=D&date=20060310&CC=KR&NR=20060022673A&KC=A

Network architecturel

 Concepts:

• protocols

• uses relations

• part-of relations

• large scale on-line communities

Software complexity

Drawing application : ± 4K lines

High-end television : ± l.5 M lines

Telephone exchange: ± 6M lines

PC operating System: ± 30M lines

Methods and tools needed

Software complexity

symptom fighting

approaches

bug management tools

expensive gurus

planning tools

outsourcing

Model based approaches of the design

process, up to

testing

life-cycle models

software specification

software architecture verification

Testing

Automatic test generation testing generation feijs Google Scholar

Coverage analysis

Regression tests

http://scholar.google.nl/scholar?hl=nl&lr=&q=testing+generation+feijs&btnG=Zoeken

Life cycle models to

waterfall model

spiral model

V model

Software specification:l phases of the

design process, up to

Flow charts, Nassi-Sneidermann diagrams,
SDL, Yourdon diagrams, Message sequence charts, Entity

relationship diagrams, Class diagrams, ITU, OSI …

UML: the Unified Modeling Language

• describing user behaviour

• describing software behaviour

Software architecture verification:, up to

• Relation partition algebra

• Initial Example

• Applications

The software architecture is presented.

Source: “Architecture Visualisation and Analysis, Motivation and Example” by L. Feijs and R. Van

Ommering, in slightly modified form presented at the ARES International Workshop on Development and

Evolution of Software Architectures for Product Families 1996

“Dear friends, Figure 2 is our software
architecture: there are four software components,
which I will explain now.

•RSRC MNGR is the Resource Manager, which will
contain the main procedures of all our processes
and these will be scheduled by the HW and SW of
our platform.

•SYS FUNC contains the System Functions, and
this is the heart of our system. This will provide
the data transformations our customers are
waiting for.

•HW ABSTR is the minimal Abstraction of the
special Hardware of our platform.

•ERR DRVR is the Error Driver which provides for
error printing and contains a driver for the special
error LED. ”

/* Component: ERR_DRVR */

err_pr() { led_33(); }

led_33() { err_pr(); }

/* Component: HW_ABSTR */

#include "ERR_DRVR.h"

power() { err_pr(); i2c(); }

i2c() { }

/* Component: RSRC_MNGR */

#include "SYS_FUNC.h"

#include "HW_ABSTR.h"

#include "ERR_DRVR.h"

init() { e(); led_33(); }

reboot() { power(); init(); power(); }

step() { while (1+1==2) a(); }

/* Component: SYS_FUNC */

#include "HW_ABSTR.h"

#include "ERR_DRVR.h"

a() { b(); c(); }

b() { power(); }

c() { d(); g(); }

d() { i2c(); }

e() { f(); }

f() { g(); err_pr(); led_33(); }

g() { h(); }

h() { err_pr(); }

err_pr led_33

led_33 err_pr

power err_pr

power i2c

init e

init led_33

reboot power

reboot init

reboot power

step a

a b

a c

b power

c d

c g

d i2c

e f

f g

f err_pr

f led_33

g h

h err_pr

the essential ‘use’ information

is easily extracted and stored

in a file called uses.

RSRC_MNGR SYS_FUNC

SYS_FUNC HW_ABSTR

SYS_FUNC ERR_DRVR

The essential information of Figure

2 is an intended ‘use’ relations on

components, which is as follows:

Part-of relation between functions

and components

Uses relation at the C

function level

Calculate use lifted by part-of

HW_ABSTR ERR_DRVR

RSRC_MNGR SYS_FUNC

RSRC_MNGR HW_ABSTR

RSRC_MNGR ERR_DRVR

SYS_FUNC HW_ABSTR

SYS_FUNC ERR_DRVR

The architect discovers the real system

The resource manager component RSRC MNGR has three C
functions, init, reboot, step, each of which can be viewed
as an independent main program. Of these, init and reboot
are tied to the hardware reset interrupt and the software
interrupt (trap), whereas step is supposed to be called
in an eternal loop. The architected component-level ‘use’
relation of Figure 2 has been made with the step function
in mind. But everybody knows that for initialization and
rebooting one has to do some low level tricks every now
and then. For example reboot has to call power and indeed,
this causes a direct ‘uses’ line from RSRC MNGR to HW
ABSTR. This explains why Figure 5 has more lines than
Figure 2. And if you look at it this way, we have in fact
respected the original architecture.

The programmer explains

why RSRC MNGR must

use ERR DRVR.

The relational calculator

Transitive closure of uses

Functions transitively

uses connected to step

function.

a

b

c

d

err_pr

g

h

i2c

led_33

power

step

Set of elements

reachable from

step

The team arrives at a common understanding of the software

architecture

recalculated lifted

use relation after

restricting use to

set reachable from

step

Chapter 2: Verifying Architectural Design Rules of a SPL. In this

chapter, we cover the research questions RQ2.1 and RQ4.1. The high-

level research questions are a) how can we analyze whether or not the

specified product line architectural rules are followed in the

implementation? and b) how are the implemented decisions related to

business goals? These research questions were investigated using the

NASA’s core flight software product line (CFS) as the case study.

This chapter was published at the international conference on

software product line (SPLC), in 2009 [97].

Thank you for your attention

