
Introduction to UML

Jun Hu
Department of Industrial Design

Eindhoven University of Technology
j.hu@tue.nl

http://id00243.id.tue.nl/ObjectOrientationAndDesignPatterns

October 26, 2005

 I Contents

1 Introduction 3
1.1 So you have done Java A&B . 4
1.2 Brainwashing . 4
1.3 UML: why yet another language? 5
1.4 UML History . 5
1.5 Standardization: OMG . 7
1.6 General Goals of UML . 7
1.7 Overview of UML 2.0 . 8

2 UML 1.x Diagrams 10
2.1 ♥ Use Case Diagrams . 10

2.1.1 Overview . 10
2.1.2 What is a use case? . 13
2.1.3 Actors In Use Cases . 14
2.1.4 Example of a use case 14
2.1.5 A POS example (1) . 14
2.1.6 A POS example (2) . 15
2.1.7 Use Case Best Practices 15

http://id00243.id.tue.nl/ObjectOrientationAndDesignPatterns

2.1.8 Common Use Case Pitfalls 16
2.2 ♥ Class Diagrams . 16

2.2.1 Classes . 16
2.2.2 Attributes . 17
2.2.3 Operations . 17
2.2.4 Visibility . 17
2.2.5 Class & Instance Scope 18
2.2.6 Bi-directional Associations 19
2.2.7 Association names & role defaults 19
2.2.8 Multiplicity & Collections 19
2.2.9 Aggregation & Composition 20
2.2.10 Generalization . 21
2.2.11 Overriding Operations 21
2.2.12 Interface & Realization 22
2.2.13 Abstract Classes & Abstract Operations 22
2.2.14 More on Generalization 23
2.2.15 Dependencies . 23
2.2.16 Qualified Associations 24
2.2.17 Association Classes . 24
2.2.18 Associations, Visibility & Scope 25
2.2.19 Information Hiding . 25
2.2.20 Exercise . 26

2.3 Object Diagrams & Filmstrips 27
2.3.1 Instances of Class Diagrams 27
2.3.2 Object State . 28
2.3.3 Filmstrips . 29

2.4 ♥ Sequence Diagrams . 30
2.4.1 Why sequence diagrams 30
2.4.2 Messages & Timelines 30
2.4.3 Object Creation & Destruction 31
2.4.4 Collections and Iterations 31
2.4.5 Conditional Messages 32
2.4.6 Class Operations . 32
2.4.7 Recursion . 32

2.5 Collaboration Diagrams . 33
2.6 ♥ Activity Diagrams . 34

2.6.1 Process Flow . 34
2.6.2 Concurrency . 36

Introduction to UML Jun Hu

2.6.3 Swim lanes . 36
2.6.4 Signals and Exceptions 37

2.7 State Diagrams . 38
2.7.1 State transitions . 38
2.7.2 Transitions and Actions 39
2.7.3 Sub States & History States 40

2.8 Component Diagrams . 40
2.8.1 Components and Dependencies 41
2.8.2 Components Can Contain Components 41

2.9 Package Diagrams . 42
2.10 Deployment Diagrams . 43

3 UML Views 43
3.1 Use Case View . 44
3.2 Logical View . 44
3.3 Component View . 45
3.4 Concurrency View . 45
3.5 Deployment View . 45

4 Where to start? 46

5 Tools 46
• Introduction
• UML 1.x Diagrams
• UML Views
• Where to start?
• Tools

 I Introduction

• So you have done Java A&B
• Brainwashing
• UML: why yet another language?
• UML History
• Standardization: OMG
• General Goals of UML
• Overview of UML 2.0

Introduction to UML Jun Hu

 I Introduction I So you have done Java A&B

Owning a hammer doesn’t make one an architect.

• You learnt Object-oriented Programming.

• You have encountered/mastered the following concepts:

– Encapsulation
– Class/Object
– Composition/Aggregation
– Generalization/Inheritance
– Polymorphism
– Messages

• Useful for decomposing/modeling/understanding the complexity

• From a craftsman to a designer:

One level up: Forget about Java, think about object oriented Analysis/Design
Even higher: pattern oriented Anaysis/Design

 I Introduction I Brainwashing

Please forget about the following first:

• int i = 0;

• if {. . . } else {. . . }

• System.out.print("hello, hell");

• while(true){
if(Sensor.A.readValue()==1) Sound.playTune(extremely, happy);

}

Lets pick up the terms that you prefer as a designer:
• product • system • things • scenario • user, consumer, people • parents,
children • relationship • communication • competencies • . . .

Introduction to UML Jun Hu

 I Introduction I UML: why yet another language?

• Object oriented analysis and design models are to

– Communicate
– Specify
– Define Software architecture
– Manage complexity
– Facilitate reuse

• All these tasks require a concise and unambiguous modeling language.

– In 1994, more than 50 OO methods:
Fusion, Shlaer-Mellor, ROOM, Class-Relation, Wirfs-Brock, Coad-Yourdon,
MOSES, Syntropy, BOOM,OOSD, OSA, BON, Catalysis, COMMA,HOOD,
Ooram, DOORS

– Graphical notations differ
– The process differs or remains vague
– But: Industry needs standards!

 I Introduction I UML History

• To stop the OO method wars, UML was invented by “3 Amigos”:

Grady
Booch

Ivar
Jacobson

James
Rumbaugh

Grady Booch: The Booch Method (Conception, Architecture)
Ivar Jacobson: Object Object-Oriented Software Engineering (OOSE) (Use Cases)
James Rumbaugh: Object Modeling Technique (OMT) (Analysis)

• UML standardization

– Started in 1994 by putting aside their own methods and notations
– Version 1.0 published in 1997
– Version 2.0 published in 2005
– It has become the formal and de facto standard

 I Introduction I UML History (2)

Introduction to UML Jun Hu

Booch 1994,1996

Rumbaugh 1991

Jacobsen 1992

UML 0.8 1995

Rational

Rational buys Objectory

UML 1.0 1997

OMG starts work in 1997 with UML parterners

Odell 1994

OO Community

UML 1.1

UML 1.2

UML 1.3 1999

UML 1.4

UML 1.5 2003

 I Introduction I UML History (2)

Introduction to UML Jun Hu

Booch 1994,1996

Rumbaugh 1991

Jacobsen 1992

UML 0.8 1995

Rational

Rational buys Objectory

UML 1.0 1997

OMG starts work in 1997 with UML parterners

Odell 1994

OO Community

UML 1.1

UML 1.2

UML 1.3 1999

UML 1.4

UML 1.5 2003

 I Introduction I Standardization: OMG

• OMG = Object Management Group

– Non-profit organization founded in 1989
– Over 700 linked companies
– Usually known for CORBA (IDL, IIOP · · ·)

• June 1996 : Task Force Object Analysis & Design

– Definition of a standard model form
– Definition of a “Meta-model” standard
– Definition of a graphical notation (optional)

 I Introduction I General Goals of UML

• Model systems using OO concepts

– express object-oriented designs visually
– programming language independent
– provide high-level documentation
– communicate, evaluate, and reuse designs
– can think about design, before coding

Introduction to UML Jun Hu

• Establish an explicit coupling to conceptual as well as executable artifacts

• To create a modeling language usable by both humans and machines

• Models different types of systems
information systems, technical systems, embedded systems, realtime systems, distrib-
uted systems, system software, business systems, UML itself, ...

 I Introduction I Overview of UML 2.0

UML 2.0 Diagram

Structure

Diagram

Behavior

Diagram

Class Diagram

Component

Diagram

Composite

Structure

Diagram

Deployment

Diagram

Object Diagram

Package

Diagram

State Machine

Diagram

Interaction

Diagram

Use Case

Diagram

Activity

Diagram

Communication

Diagram

Interaction

Overview

Sequence

Diagram
Timing Diagram

There are three classifications of UML diagrams:

Behavior diagrams A type of diagram that depicts behavioral features of a sys-
tem or business process. This includes activity, state machine, and use
case diagrams as well as the four interaction diagrams.

Interaction diagrams A subset of behavior diagrams which emphasize object
interactions. This includes communication, interaction overview, se-
quence, and timing diagrams.

Structure diagrams A type of diagram that depicts the elements of a specifi-
cation that are irrespective of time. This includes class, composite struc-
ture, component, deployment, object, and package diagrams.

The following summarizes the thirteen, up from nine in UML 1.x, diagram
types of UML 2.x:

Introduction to UML Jun Hu

Activity Diagram Depicts high-level business processes, including data flow,
or to model the logic of complex logic within a system.

Class Diagram Shows a collection of static model elements such as classes
and types, their contents, and their relationships.

Communication Diagram Shows instances of classes, their interrelationships,
and the message flow between them. Communication diagrams typi-
cally focus on the structural organization of objects that send and receive
messages. Formerly called a Collaboration Diagram.

Component Diagram Depicts the components that compose an application,
system, or enterprize. The components, their interrelationships, inter-
actions, and their public interfaces are depicted.

Composite Structure Diagram Depicts the internal structure of a classifier (such
as a class, component, or use case), including the interaction points of
the classifier to other parts of the system.

Deployment Diagram Shows the execution architecture of systems. This in-
cludes nodes, either hardware or software execution environments, as
well as the middleware connecting them.

Interaction Overview Diagram A variant of an activity diagramwhich overviews
the control flow within a system or business process. Each node/activity
within the diagram can represent another interaction diagram.

Object Diagram Depicts objects and their relationships at a point in time, typ-
ically a special case of either a class diagram or a communication dia-
gram.

Package Diagram Shows how model elements are organized into packages as
well as the dependencies between packages.

Sequence Diagram Models the sequential logic, in effect the time ordering of
messages between classifiers.

State Machine Diagram Describes the states an object or interaction may be
in, as well as the transitions between states. Formerly referred to as a
state diagram, state chart diagram, or a state-transition diagram.

Introduction to UML Jun Hu

Timing Diagram Depicts the change in state or condition of a classifier in-
stance or role over time. Typically used to show the change in state of an
object over time in response to external events.

Use Case Diagram Shows use cases, actors, and their interrelationships.

 I UML 1.x Diagrams

• ♥ Use Case Diagrams
• ♥ Class Diagrams
• Object Diagrams & Filmstrips
• ♥ Sequence Diagrams
• Collaboration Diagrams
• ♥ Activity Diagrams
• State Diagrams
• Component Diagrams
• Package Diagrams
• Deployment Diagrams

 I UML 1.x Diagrams I ♥ Use Case Diagrams

• Overview
• What is a use case?
• Actors In Use Cases
• Example of a use case
• A POS example (1)
• A POS example (2)
• Use Case Best Practices
• Common Use Case Pitfalls

 I UML 1.x Diagrams I ♥ Use Case Diagrams I Overview

Specifies participants in a use case and the relationships between use cases.

• Use cases
• Actors (or roles)
• Communication associations
between actors and use cases

• Specialization/Generalization

between actors/roles
• Use case dependencies:

– «extend»
– «include»

Introduction to UML Jun Hu

Send Product

Place Recurring Order

Place Order

Create Account

Establish Credit

Shipper

Salesperson

Supervisor

System

Communication

Use Case

Actor

Dependencies

System boundary

Generalization <<include>>

<<extend>>

The most important thing to know about any use case for a system is its
functional goal. Many projects lose sight of the real purpose of use cases,
choosing to focus on the scenarios and often irrelevant details.

The functional goals of a systemmean the things users can do with the system.
This is a very important distinction – use cases are not features of the system.
They are things users can do using the features of the system.

In this sense, use cases indirectly describe features of the system. If you
are unsure as to the functional goals of your system’s use cases, you must urge
the requirements analyst and the customer to put more thought into why the
features they’re asking for must exist in the first place.

All too often, analysts invest too much time on the details of the use cases
and not on the reasons behind them. Most importantly, you will need to know
exactly what the functional goals of the system are in order to validate the
usefulness of anything you plan to build.

Use case diagrams are deliberately simple and made up of only a handful
of easily-remembered notational elements:

Use Case: An oval shape with the name of the use case inside. In UML, a
use case generalizes a set of use case instances (or scenarios) in much
the same way that classes generalize a set of similar objects. In the run-
ning system, we see instances of use cases. People often confuse use
cases with use case scenarios, and it is vital to object-oriented develop-
ment that one understands the subtle distinction as use case scenarios
are important in choosing system test cases which will drive the whole
development effort.

Introduction to UML Jun Hu

Actor: A stick man that represents a role played by one or more users. Actors
are external roles played by people or other systems that can trigger (in-
stigate) use case instances. Poor choices of actor name would be “Jason”
or “Managing Director” because these may well not describe the role the
actor plays in respect of the use case. Just as many of us wear different
“hats” in our professional and personal life (consultant, mentor, boss, fa-
ther, son and so on), individual users can play many roles and therefore
be represented by more than one actor. Its not uncommon, for example,
for a system administrator to also be a general user of the system.

Communication Relationship: We show that an actor takes part in a use case
by drawing a line between them. This tells us that the actor and the sys-
tem communicate in the course of an instance of a use case (a scenario),
and so is called a communicates relationship. Communication relation-
ships are especially useful for deciding which roles require permission
to take part in which use cases – in other words, it can help to show func-
tional entitlement. Notice that this relationship is bi-directional -ĺC that
is, the communication can go from actor to use case instance, or from
use case instance to actor (in UML, when we don’t see an arrowhead at
one end of a relationship we often assume that the relationship works
both ways). So, our withdraw cash use case could communicate with the
bank’s own internal systems to check the account has sufficient funds.

System Boundary: Optionally, it can be useful sometimes to show that certain
use cases form part of a specific system. By drawing a system bound-
ary around the withdraw cash use case, we’re saying that this use case
belongs to the ATM system. In other words, if a card holder wants to
withdraw cash, they can do so using the ATM system. In practice, sys-
tem boundaries are really only useful when there might be more than
one system’s use cases depicted on the same diagram. Arguably it is re-
dundant otherwise. Still, it is often overlooked in analysis where the sys-
tem begins and ends, so it can be helpful to make the boundary explicit.
In object-oriented development, we are especially concerned in knowing
that in order for actors to take part in use case scenarios, there must be
some protocol through which the system and the actors communicate
– eg, a web browser, a windows UI, a mobile phone, RPC client and so
forth.

Often you will find that two or more use cases are in some way related. In

Introduction to UML Jun Hu

UML, we can show three different kinds of relationship between use cases.

equivalent Equivalent use cases have identical activities and identical flow, but
end users think of them as different. (“Deposit” and “Withdrawal” might
have identical activities, though the objects involved might be different.)

extends When extension extends base, all the activities of the base use case
are also performed in the extension use case, but the extension use case
adds additional activities to – or slightly modifies existing activities of
– the base use case. (To place a recurring order, you must perform all
the activities of placing an order plus set up the recurrence.) If a set
of activities occur in several use cases, it’s reasonable to "normalize"
these common activities out into a base use case, and then extend it as
necessary.

includes A subcase. If case includes subcase, then the activities of subcase
are performed one or more times in the course of performing case. (An
"Authenticate" subcase may be included in several larger use cases, for
example.)

requires, follows If follower requires leader, then leader must be completed
before you can execute the follower use case. (You must create an ac-
count before you can place an order.)

resembles Two use cases are very similar, but do have different activities.

 I UML 1.x Diagrams I ♥ Use Case Diagrams I What is a use case?

Describes a functional requirement of the system as a whole from an external
perspective:

• Library Use Case: Borrow book

• VCR Use Case: Set Timer

• Top1Toy’s Use Case: Buy cheap plastic toy

• IT Help Desk Use Case: Log issue

Introduction to UML Jun Hu

 I UML 1.x Diagrams I ♥ Use Case Diagrams I Actors In Use Cases

• Actors are external roles

• Actors initiate (and respond to) use cases

– Sales rep logs call
– Driver starts car
– Alarm system alerts duty officer
– Timer triggers email

 I UML 1.x Diagrams I ♥ Use Case Diagrams I Example of a use case

A use case can be specified textu-
ally:

Use case: Create account
Involved actor(s): Salesperson

1. Salesperson enters the account
name and password

2. Salesperson clicks the Create
button

3. The system creates an account
4. The system confirms the cre-

ated account

Error Case 1: Creation Failed
If the system fails at 3, then
the system shows a message
about the failure and redirects
the user back to the step 1

Or using activity diagrams:

User enters the account and the password

User clicks the Create button

System creates the account

System confirms creation

[succeeded]

Error message

[else]

 I UML 1.x Diagrams I ♥ Use Case Diagrams I A POS example (1)

Use Case 1: Sales Clerk checks out an item
Involved actor(s): Customer, Sales Clerk

1. Customer sets item on counter.
2. Sales Clerk swipes UPC reader across UPC code on item
3. System looks up UPC code in database procuring item description
and price
4. System emits audible beep.
5. System announces item description and price over voice output.
6. System adds price and item type to current invoice.
7. System adds price to correct tax subtotal

Error case 1: UPC code unreadable
If after step 2, the UPC code was invalid or was not properly read,
emit an audible ‘bonk’ sound.

Error case 2: No item in database
If after step 3 no database entry is found for the UPC flash the
‘manual entry’ button on the terminal. Accept key entry of price and
tax code from Sales Clerk. Set Item description to “Unknown item”.
Go to step 4.

Introduction to UML Jun Hu

Sales Clerk

Customer

Check Out Item

 I UML 1.x Diagrams I ♥ Use Case Diagrams I A POS example (2)

Use Case 1: Check out item
Involved actor(s): Customer, Sales Clerk

1. Customer sets item on counter.
2. XP21: Sales clerk swipes UPC reader («include» Swipe UPC
Reader) across UPC code on item.
3. System looks up UPC code in database procuring item description
and price.
4. System emits audible beep.
5. System announces item description and price over voice output.
6. System adds price and item type to current invoice.
7. System adds price to correct tax subtotal.

Use Case 2: Check Out “21” Item
Involved actor(s): Sales Clerk, Manager

2. Replace XP21 of extended use case with:
2.1. Sales Clerk calls “21” over P.A. System
2.2. Waits for manager
2.3. Manager swipes UPC reader («include» Swipe UPC Reader)

POS

Sales Clerk

Customer

Check Out Item

Check Out

“21” item

Manager

Swipe

UPC

Reader

Inventory

Item

Inventory

Clerk

<<include>>

<<extend>>

<<include>>

<<include>>

<<include>>

 I UML 1.x Diagrams I ♥ Use Case Diagrams I Use Case Best Practices

• Keep them simple & succinct
• Don’t write all the use cases up front - develop them incrementally
• Revisit all use cases regularly
• Prioritise your use cases
• Ensure they have a single tangible & testable goal
• Write them from the user’s perspective, and write them in the language
of the business

• Set a clear system boundary and do not include any detail from behind
that boundary

• Look carefully for alternative & exceptional flows

Introduction to UML Jun Hu

 I UML 1.x Diagrams I ♥ Use Case Diagrams I Common Use Case Pitfalls

• The system boundary is undefined or inconstant
• The use cases are written from the system’s (not the actors’) point of
view

• The actor names are inconsistent
• There are too many use cases
• The use-case specifications are too long
• The customer doesn’t understand the use cases
• The use cases are never finished

 I UML 1.x Diagrams I ♥ Class Diagrams

• Classes
• Attributes
• Operations
• Visibility
• Class & Instance Scope
• Bi-directional Associations
• Association names & role defaults
• Multiplicity & Collections
• Aggregation & Composition
• Generalization
• Overriding Operations
• Interface & Realization
• Abstract Classes & Abstract Operations
• More on Generalization
• Dependencies
• Qualified Associations
• Association Classes
• Associations, Visibility & Scope
• Information Hiding
• Exercise

 I UML 1.x Diagrams I ♥ Class Diagrams I Classes

c lass Account {
} Account

Introduction to UML Jun Hu

In most cases, we need to know three things about a class in UML. What
is its name? What attributes does it have? What responsibilities (operations)
does it have? We can model this using the class notation in UML.

A class has at least one compartment, telling us the name of the class. Op-
tionally, it also has a compartment telling us what attributes the class has, and
another telling us what operations it has. Conventionally, the name compart-
ment is first, followed by attributes and then operations. A class can also have
other compartments that give us more information. For example, sometimes
we might want to show that a class must follow a set of rules, so we might add
a constraints compartment. Generally, its better not to overcomplicate a class
diagram because it makes them harder to read.

 I UML 1.x Diagrams I ♥ Class Diagrams I Attributes

c lass Account {
p r i v a t e f l o a t balance = 0;
p r i v a t e f l o a t l i m i t ;

}

Account

- balance : Single = 0
- limit : Single

[visibility] [/] attribute_name[multiplicity] [: type [= default_value]]

 I UML 1.x Diagrams I ♥ Class Diagrams I Operations

c lass Account {
p r i v a t e f l o a t balance = 0;
p r i v a t e f l o a t l i m i t ;

p u b l i c vo id depos i t (f l o a t amount) {
balance = balance + amount ;

}

p u b l i c vo id withdraw (f l o a t amount) {
balance = balance − amount ;

}
}

Account

- balance : Single = 0
- limit : Single

+ deposit(amount : Single)
+ withdraw(amount : Single)

[visibility] op_name([[in|out] parameter : type[, more params]])[: return_type]

 I UML 1.x Diagrams I ♥ Class Diagrams I Visibility

c lass Account {
p r i v a t e f l o a t balance = 0;
p u b l i c f l o a t l i m i t ;
p ro tec ted i n t i d ;

i n t databaseId ;

p u b l i c vo id depos i t (f l o a t amount) {
balance = balance + amount ;

Introduction to UML Jun Hu

}

p r i v a t e vo id withdraw (f l o a t amount) {
balance = balance − amount ;

}

p ro tec ted i n t ge t Id () {
r e t u r n i d ;

}

i n t getDatabaseId () {
r e t u r n databaseId ;

}
}

Account

- balance : float = 0
+ limit : float
id : int
~ databaseId : int

+ deposit(amount : single)
-withdraw(amount : single)
getAvailableFunds() : single
~ getDatabaseId() : int

+ = public
- = private
= protected
~ = package

In UML, we can denote the visibility of an attribute or operation by placing
the appropriate access modifier in front of the member name.

Private members are only accessible from inside the same class.
Public members can be accessed from anywhere in the model.
Protected members are only accessible in the same class or from any of its

subclasses (more about subclasses later).
Package visibility means that only classes in the same UML package can

access that member (more on packages later).
99.9999% of the time, visibility is entirely an issue for technical design

and should not be included in analysis models as it just confuses non-technical
folk.

 I UML 1.x Diagrams I ♥ Class Diagrams I Class & Instance Scope

c lass Person {
p r i v a t e s t a t i c i n t numberOfPeople = 0;
p r i v a t e S t r i n g name ;

p r i v a t e Person (s t r i n g name) {
t h i s . name = name ;
numberOfPeople ++;

}

p u b l i c s t a t i c Person createPerson (s t r i n g name) {
r e t u r n new Person (name) ;

}

p u b l i c s t r i n g getName () {
r e t u r n t h i s . name ;

}

p u b l i c s t a t i c i n t getNumberOfPeople () {
r e t u r n numberOfPeople ;

}
}

/∗−−∗ /
i n t numOfPeople = Person . getNumberOfPeople () ;
Person p = Person . createPerson (" Jun Hu") ;

Person

- numberOfPeople : int
- name : string

+ createPerson(name : string) : Person
+ getName() : string
+ getNumberOfPeople() : int
- Person(name : string)

Introduction to UML Jun Hu

 I UML 1.x Diagrams I ♥ Class Diagrams I Bi-directional Associations

c lass A
{

p u b l i c B b ;
p u b l i c A () {

b = new B(t h i s) ;
}

}

/∗−−−−−−−−−−−−−−−−∗ /
c lass B{

p u b l i c A a ;
p u b l i c B(A a)
{

t h i s . a = a ;
}

}

/∗−−−−−−−−−−−−−−−−∗ /
A a = new A () ;
B b = a . b ;
A a1 = b . a ;
asser t a == a1 ;

A

b : B

Equivalent to

B

a : A

A B

1

b

multiplicity

role name

a

1

 I UML 1.x Diagrams I ♥ Class Diagrams I Association names & role defaults

c lass Person
{

/ / assoc ia t i on : L ives a t
p u b l i c Address address ;

p u b l i c Person (Address address)
{

t h i s . address = address ;
}

}

Person Address

Lives at

Default role name = address

Default multiplicity = 1

 I UML 1.x Diagrams I ♥ Class Diagrams I Multiplicity & Collections

c lass Customer
{

/ / accounts [1 . . ∗] : Account
A r r a y L i s t accounts = new A r r a y L i s t () ;

p u b l i c Customer ()
{

Account defau l tAccount = new Account () ;
accounts . add (defau l tAccount) ;

}
}

Customer Account
1..*

accounts

Customer

accounts[1..*] : Account

Equivalent to

1..2

Introduction to UML Jun Hu

Just as we can work with collections of objects in Java, we can also model
collections in UML. Anything that has a multiplicity with an upper limit of
more than 1 is effectively a collection of objects of that type. Just as a private
variable in a class could be declared as an array (or similar collection type) of
a certain type of object (eg, string[] middleNames), so too can an attribute be
declared as a collection of objects of that type.

Multiplicity is denoted by a range of two ore more numbers separated by
“..” or “,” , where “..” means “to” and “,” means “or”:

0..∗ = zero to many
1..4 = one to four
2, 4 = two or four
1 = just one
∗ = many (implies zero to many)

 I UML 1.x Diagrams I ♥ Class Diagrams I Aggregation & Composition

/∗ ∗∗∗∗∗∗∗∗∗∗ Aggregat ion ∗∗∗∗∗∗∗∗∗∗∗ ∗ /
p u b l i c c lass ClassA {

p r i v a t e Class b ;

p u b l i c classA (ClassB b) {
t h i s . b = b ;

}
}

/∗ ∗∗∗∗∗∗∗∗∗∗ Composit ion ∗∗∗∗∗∗∗∗∗∗∗ ∗ /
p u b l i c c lass ClassA {

p r i v a t e ClassA b = new ClassB () ;
}

Computer HardwareDevice

1..*

Aggregation – is made up of objects that can be shared or exchanged

ShoppingBasket OrderItem

1..*

Composition – is composed of objects that cannot be shared or

exchanged and live only as long as the composite object

0..1

1

Aggregation is for clearer communication its sometimes necessary to show
that one object is made up of one or more other objects. For example, a per-
sonal computer is made up of parts like a motherboard, hard drive and a
graphics card. Similarly, a motherboard is made up of smaller parts which
includes one ore more processors.

Aggregation relationships like these are shown by adding an un-shaded
diamond at the aggregate end of the relationship (the container end, if you
like).

In programming terms, aggregation has no real meaning. Since the ob-
jects that make up an aggregate can exist without it and can be shared in re-
lationships with other objects there is no practical way of implementing an

Introduction to UML Jun Hu

aggregation that would make it any different from a straightforward associa-
tion.

A stronger kind of aggregation is composition. Unlike their aggregated
counterparts, composing objects (like the line items of an invoice or elements
of an HTML document) can only exist while the composite parent object is
around. In strict terms, the lifetime of objects that compose another are lim-
ited to the lifetime of the composite object. This has very practical implications
for managing the lifetimes of objects engaged in a composition relationship.
They cannot be shared in relationships with other objects, and must be de-
stroyed when the parent is destroyed.

 I UML 1.x Diagrams I ♥ Class Diagrams I Generalization

c lass Person {
}

c lass Employee extends Person {
}

Person

Employee

What gives object oriented programming its real power is the ability to
abstract. When we work with abstractions we gain the ability to apply the
same logic to a family of related classes that share characteristics – attributes
and operations – but that also specialize beyond those characteristics to offer
something new.

 I UML 1.x Diagrams I ♥ Class Diagrams I Overriding Operations

c lass Account
{

p ro tec ted f l o a t balance = 0;
p ro tec ted f l o a t l i m i t = 0 ;

p u b l i c vo id depos i t (f l o a t amount) {
balance = balance + amount ;

}

p u b l i c vo id withdraw (f l o a t amount) {
balance = balance − amount ;

}
}

c lass Sett lementAccount extends Account {
p r i v a t e f l o a t debt = 0 ;

f l o a t ava i lab leFunds () {
r e t u r n (balance + l i m i t − debt) ;

}

p u b l i c vo id withdraw (f l o a t amount) {
i f (amount > t h i s . ava i lab leFunds ()) {

throw new Insu f f i c i en tFundsExcep t i on () ;
}
base . withdraw (amount) ;

}
}

Introduction to UML Jun Hu

Account

+ deposit(amount : float)
+ withdraw(amount : float)

SettlementAccount

+ withdraw(amount : float)

-debt : float = 0
/ availableFunds : float = balance + limit - debt

balance : float = 0
limit : float = 0

 I UML 1.x Diagrams I ♥ Class Diagrams I Interface & Realization

i n t e r f a c e Person {
}

c lass Employee implements Person {
}

<<interface>>

Person

Employee Employee

Person

OR

It can often be preferable to implement an interface instead of using inher-
itance, for example if you knew that different kinds of people eat in different
ways then there would no need to have an implementation of the eat() opera-
tion on the Person class. A class that has no attributes and implements none
of its operations (all of its operations are abstract) is essentially just an inter-
face. In programming languages like C# and Java, classes cannot inherit from
more than one class (though in other languages like C++ multiple inheritance
is allowed – though not recommended) but they can implement more than
one interface. This makes it possible for the same class to wear many hats
depending on who is using it.

An interface is entirely a design concept, because in analysis interfaces
have no meaning at all.

 I UML 1.x Diagrams I ♥ Class Diagrams I Abstract Classes & Abstract Operations

abs t rac t c lass Account {
p u b l i c abs t r ac t vo id depos i t (f l o a t amount) ;
p u b l i c abs t r ac t vo id withdraw (f l o a t amount) ;

}

c lass Sett lementAccount extends Account {
p r i v a t e f l o a t balance = 0;
p r i v a t e f l o a t l i m i t = 0 ;
p r i v a t e f l o a t debt = 0 ;

Introduction to UML Jun Hu

f l o a t ava i lab leFunds () {
r e t u r n (balance + l i m i t − debt) ;

}

p u b l i c vo id depos i t (f l o a t amount) {
balance = balance + amount ;

}

p u b l i c vo id withdraw (f l o a t amount) {
i f (amount > t h i s . ava i lab leFunds ()) {

throw new Insu f f i c i en tFundsExcep t i on () ;
}
balance = balance − amount ;

}
}

Account

+ deposit(amount : float)
+ withdraw(amount : float)

SettlementAccount

+ deposit(amount : float)
+ withdraw(amount : float)

- balance : float = 0
- limit : float = 0
- debt : float = 0
/ availableFunds : float = balance + limit - debt

Sometimes we want to define a class that implements shared characteris-
tics of a family of similar classes, but that does not define a set of objects in
their own right. Abstract classes are classes that can have some implementa-
tion, but that can never be directly instantiated themselves. They are designed
purely to be extended (or to offer class-scope operations only).

Similarly, some operations are intended only to be implemented by sub-
classes. Abstract operations define the signature of an operation only – ie, its
name, visibility, arguments and return type. Concrete subclasses must over-
ride these abstract operations.

 I UML 1.x Diagrams I ♥ Class Diagrams I More on Generalization

A

DCB

A

DCB

Equivalent to

{abstract}

Mammal

BirdCatHuman

Mammal

BirdCatHuman

Equivalent to

 I UML 1.x Diagrams I ♥ Class Diagrams I Dependencies

Introduction to UML Jun Hu

p u b l i c c lass Account {

p u b l i c vo id withdraw (f l o a t amount)
throws Insu f f i c i en tFundsExcep t i on {

}

}

Account

InsufficientFundsException

+ withdraw(amount : float)

The four kinds of relationship we’ve seen so far can be thought of as struc-
tural relationships. An association, aggregation or composition relationship
between class A and class B can be thought of as A having an attribute of type
B (or a collection of objects of type B). If A inherits from B then A has the
same interface and implementation as B.

But sometimes we just want to show that A is somehow dependant on
B when it doesn’t inherit from B or have an attribute of type B. Sometimes
we just want to show that a change to the external characteristics of B (eg,
the signature of an operation) would require a change in the implementation
of A. For example, both Person and Scuba Diver are dependant on the type
Food because they both have operations that take an object of type Food as a
parameter.

Of course, it would not make sense to draw every single dependency on our
class diagrams because they are likely to be many and the diagram would soon
get cluttered and be unreadable. But sometimes a dependency is important
and needs to be communicated as part of the design.

 I UML 1.x Diagrams I ♥ Class Diagrams I Qualified Associations

hash-table, associative array, “dictionary” . . .

c lass L i b r a r y {
p r i v a t e HashMap t i t l e s = new HashMap () ;

p u b l i c T i t l e i tem (S t r i n g isbn) {
r e t u r n (T i t l e) t i t l e s . get (isbn) ;

}
}

0..*
Library Title

0..*

0..1
ISBN

0..*

item

 I UML 1.x Diagrams I ♥ Class Diagrams I Association Classes

Introduction to UML Jun Hu

c lass Customer {
A r r a y L i s t r e n t a l s = new A r r a y L i s t () ;

}

c lass Video {
Rental r e n t a l ;

}

c lass Rental {
Customer customer ;
Video video ;

DateTime dateRented ;

p u b l i c Rental (DateTime dateRented , Customer customer , Video video) {
t h i s . dateRented = dateRented ;
v ideo . r e n t a l = t h i s ;
customer . r e n t a l s . add (t h i s) ;
t h i s . customer = customer ;
t h i s . v ideo = video ;

}
}

STB modem

hi-res&PIP low-res

robot RC

100Mb/s 1Mb/s

100b/s10Kb/s

100b/s

cable
network Internet

 I UML 1.x Diagrams I ♥ Class Diagrams I Associations, Visibility & Scope

c lass L i b r a r y {
p r i v a t e T i t l e [] t i t l e s ;

}

c lass Team{
pro tec ted Person [] members ;

}

c lass Customer {
p r i v a t e s t a t i c Customer [] a l l I n s t a n c e s ;

}

Library Title
0..*0..*

- titles

Team Person
2..*

members

Customer
0..*

- allInstances

 I UML 1.x Diagrams I ♥ Class Diagrams I Information Hiding

c lass Person
{

p u b l i c S t r i n g name ;
p u b l i c Parent [] parents = new Parent [2] ;
p u b l i c A r r a y L i s t c h i l d r e n = new A r r a y L i s t () ;

}

Person mary = new Person () ;
Person ken = new Person () ;
Person jason = new Person () ;

jason . parents [0] = mary ;
jason . parents [1] = ken ;
mary . c h i l d r e n . add (jason) ;
ken . c h i l d r e n . add (jason) ;
jason . name = " Jason " ;

Introduction to UML Jun Hu

Person

name : string
parents

0..2

children0..*

 I UML 1.x Diagrams I ♥ Class Diagrams I Information Hiding (2)

c lass Person {
p r i v a t e S t r i n g name ;
p r i v a t e Parent [] parents = new Parent [2] ;
p r i v a t e A r r a y L i s t c h i l d r e n = new A r r a y L i s t () ;

p u b l i c Person (Person mother , Person f a t h e r) {
t h i s . setParent (0 , mother) ;
t h i s . setParent (1 , f a t h e r) ;

}
p u b l i c vo id setName (S t r i n g value) {

t h i s . name = value ;
}
p u b l i c vo id setParent (i n t index , Person parent) {

parents [index] = parent ;
parent . addChi ld (t h i s) ;

}
p u b l i c vo id addChi ld (Person c h i l d) {

t h i s . c h i l d r e n . add (c h i l d) ;
}
p u b l i c Person ()
{
}

}

Person mary = new Person () ;
Person ken = new Person () ;
Person jason = new Person (mary , ken) ;
jason . setName (" Jason ") ;

Person

- name : string
- parents

0..2

- children 0..*

+ Person(mother : Person, father : Person)
+ Person()
+ setName(value :string)
+ setParent(index : int, parent : Person)
+ addChild(child : Person)

 I UML 1.x Diagrams I ♥ Class Diagrams I Exercise

Write the Java code to implement the class diagram exactly as below:

Introduction to UML Jun Hu

A

B C

I

D

0..*

0..1

1..*

1

 I UML 1.x Diagrams I Object Diagrams & Filmstrips

• Instances of Class Diagrams
• Object State
• Filmstrips

 I UML 1.x Diagrams I Object Diagrams & Filmstrips I Instances of Class Diagrams

Invoice Line Item
0..*1

myInvoice : Invoice

Item1 : Line Item

Item2 : Line Item

Item3 : Line Item

items

items

items

items

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

Object identity [optional] Object type [optional]

In OO programming, objects are instances of classes. In UML, objects are
drawn in a way similar to classes, but we optionally can give objects a unique
identity (eg, myInvoice) and optionally specify an object’s type.

When we omit the identifier then the object is an anonymous instance
– often the identity is not relevant to what we’re trying to communicate. In
analysis we often don’t want to commit ourselves to a class diagram when we
model specific snapshots of the system or business scenario, so we can omit
the object type and just pick a suitable identifier.

Introduction to UML Jun Hu

The identifier and object type are underlined, which helps us easily distin-
guish between objects and classes.

The dependency «instanceOf» tells us that an object or link is an instance
of a specific class or association (including aggregations and compositions).

Object diagrams must conform to the rules defined in the class model. In
this example, we have 3 line items inserted into the role items. Since items
has a multiplicity of 0 or more than this conforms to the class model. At the
other end, every line item must be linked to exactly one invoice because the
role of Invoice in this association has a multiplicity of exactly 1.

 I UML 1.x Diagrams I Object Diagrams & Filmstrips I Object State

• Object diagrams are snapshots
of class diagrams in execution
– that is, if we could exe-
cute a model (but that’s another
story. . .)

• Wemay use snapshots to model
the before and after of tests cases
to see what has changed and
then assign responsibility for
those changes in high-level de-
sign.

• We may also use snapshots
to debug high-level designs in
much the same way we use
breakpoints to debug our code.

: Account

Balance = 400.00

Limit = 250.00

: Customer

Name = “Jason Gorman”

accounts

holders

The best way to think of the difference between class diagrams and object
diagrams (or “snapshots”) is to relate it to the difference between the source
code of an OO program and the objects in memory when you pause execution
at a specific point.

Most debugging tools let you set breakpoints in code so you can stop it at
that point and inspect the values of variables, the type and identity of object
references and so forth to see if things are as you’d expect them to be.

In UML, we use object diagrams to illustrate the state of the system (or part
of a system) at some “breakpoint” in execution – that is, if we could execute a

Introduction to UML Jun Hu

model (but that’s another story. . .)
Object diagrams are probably the most useful and the most under-utilized

part of UML. In object-oriented development, we use snapshots to model the
“before” and “after” of tests cases to see what has changed and then assign re-
sponsibility for those changes in high-level design (using sequence diagrams).
We also use snapshots to “debug” high-level designs in much the same way we
use breakpoints to debug our code.

 I UML 1.x Diagrams I Object Diagrams & Filmstrips I Filmstrips

: Invoice

Item1 : Line Item

quantity = 3

Dry Wipe Marker : Product

unit price = 0.99

Board Rubber : Product

unit price = 3.99

items
/ total = 2.97

: Invoice

Item1 : Line Item

quantity = 3

Dry Wipe Marker : Product

unit price = 0.99

Board Rubber : Product

unit price = 3.99

items
/ total = 6.96

Item2 : Line Item

quantity = 1

items

new line item(quantity = 1, product = Board Rubber)

 I UML 1.x Diagrams I Object Diagrams & Filmstrips I Filmstrips (2)

• We can animate the effect of an
operation using a pair of snap-
shots

• Change are highlighted so they
are easy to spot.

• There are several effects we
need to note in a filmstrip:

– Changes to attribute values

– Object creation
– Link creation
– Link destruction

Introduction to UML Jun Hu

: Invoice

Item1 : Line Item

quantity = 3

Dry Wipe Marker : Product

unit price = 0.99

Board Rubber : Product

unit price = 3.99

items
/ total = 2.97

: Invoice

Item1 : Line Item

quantity = 3

Dry Wipe Marker : Product

unit price = 0.99

Board Rubber : Product

unit price = 3.99

items
/ total = 6.96

Item2 : Line Item

quantity = 1

items

new line item(quantity = 1, product = Board Rubber)

 I UML 1.x Diagrams I ♥ Sequence Diagrams

• Why sequence diagrams
• Messages & Timelines
• Object Creation & Destruction
• Collections and Iterations
• Conditional Messages
• Class Operations
• Recursion

 I UML 1.x Diagrams I ♥ Sequence Diagrams I Why sequence diagrams

• In OO analysis & design, the real objective is to dream up ways in which
groups of objects can collaborate together to complete some useful task.

• In OO terms, we say that objects interact with each other by sending
messages (in the form of method calls or events).

 I UML 1.x Diagrams I ♥ Sequence Diagrams I Messages & Timelines

p u b l i c c lass ClassA {
p r i v a t e ClassB b = new ClassB () ;

p u b l i c vo id methodA () {
b . methodB () ;

}
}

p u b l i c c lass ClassB {
p r i v a t e ClassC c = new ClassC () ;

p u b l i c vo id methodB () {
i n t r e s u l t = c . methodC (1) ;

}
}

p u b l i c c lass ClassC {
p u b l i c i n t methodC (i n t argument) {

r e t u r n argument ∗ 2;
}

}

Introduction to UML Jun Hu

: ClassA b : ClassB c : ClassC

MethodB()
MethodC(1)

Object with
identity c of type
ClassC

Focus of control

Message from b to c (b calls a
method on c) with argument = 1.
Return value is assigned to
variable result.

Timeline
denotes lifetime of an
object

Flo
w
 o
f tim

e

Result :int

 I UML 1.x Diagrams I ♥ Sequence Diagrams I Object Creation & Destruction

p u b l i c c lass ClassA {
p u b l i c vo id methodA () {

ClassB b = new ClassB () ;
b . methodB () ;

}
}

p u b l i c c lass ClassB {
p r i v a t e ClassC c = new ClassC (2) ;

p u b l i c vo id methodB () {
i n t r e s u l t = c . methodC (1) ;

}
}

p u b l i c c lass ClassC {
p r i v a t e i n t f a c t o r = 0 ;
p u b l i c ClassC (i n t f a c t o r) {

t h i s . f a c t o r = f a c t o r ;
}
p u b l i c i n t methodC (i n t argument) {

r e t u r n argument ∗ f a c t o r ;
}

}

: ClassA

b : ClassB

c : ClassC

methodB()

methodC(1)

b is created

b is released for garbage-collection

ClassC(2)

c is created
with constructor

<<create>>

result

 I UML 1.x Diagrams I ♥ Sequence Diagrams I Collections and Iterations

p u b l i c c lass ClassA
{

/ / a c o l l e c t i o n o f ClassB ob jec ts
p r i v a t e ClassB [] classBs

= new ClassB []

{ new ClassB () ,
new ClassB () ,
new ClassB ()

} ;

Introduction to UML Jun Hu

p u b l i c vo id methodA () {
/ / i t e r a t i o n
f o r (i n t i = 0 ; i < classBs . leng th ; i ++){

ClassB b = classBs [i] ;
b . methodB () ;

}
}

}

classBs : ClassB
classBs : ClassB

: ClassA classBs : ClassB b : ClassB

b := classBs[i]
methodB()

*[for i = 0 to classBs.length – 1]

collection of ClassB

iteration

 I UML 1.x Diagrams I ♥ Sequence Diagrams I Conditional Messages

p u b l i c vo id methodA () {
f o r (i n t i = 0 ; i < classBs . leng th ; i ++){

ClassB b = classBs [i] ;

i f (b . Amount > 25) {
b . methodB () ;

}
e lse {

b . methodBB () ;
}

}
}

classBs : ClassB
classBs : ClassB

: ClassA classBs : ClassB b : ClassB

b := classBs[i]

[b.Amount > 25] methodB()

*[for i = 0 to classBs.length – 1]

condition

[else] methodBB()

 I UML 1.x Diagrams I ♥ Sequence Diagrams I Class Operations

p u b l i c c lass ClassA {
p r i v a t e A r r a y L i s t classBs

= new A r r a y L i s t () ;

p u b l i c vo id methodA () {
ClassB b = ClassB . createClassB (1 0) ;
classBs . add (b) ;

}
}

: ClassA ClassB

b : ClassB

createClassB(10)

classBs : ArrayList

ClassB(amount)

add(b)

class (not an instance of that type)

b

 I UML 1.x Diagrams I ♥ Sequence Diagrams I Recursion

Introduction to UML Jun Hu

p u b l i c c lass ClassA
{

p u b l i c vo id methodA () {
t h i s . pr ivateMethodA () ;

}

p r i v a t e vo id privateMethodA () {
}

}

: ClassA

privateMethodA()

 I UML 1.x Diagrams I Collaboration Diagrams

= Communication Diagrams in UML 2.x

window:
UserInterface

aChain:
HotelChain

1.1: makeReservation()

aHotel:
Hotel

1.1.1:MakeReservation()

aReservation:
Reservation

1.1.1.2:[isRoom]

1.1.1.1:*[for each day] isRoom:=available()

aNotice:
Confirmation

1.1.1.2.1

message

object

Sequence number
Self link

Iteration

Collaboration Diagrams are an alternative presentation of a sequence dia-
gram. They tend to be more compact, but harder to read, than the equivalent
sequence diagrams.

The boxes are objects. Lines connecting two boxes indicates that the ob-
jects collaborate with (send messages to) one another. Use a multiplicity in-
dicator in the box (such as *) to indicate that all elements of an aggregation
receive a message.

The object name typically goes inside the box, but can go outside the box
when different collaborators refer to it by different names.

Usually, the instance name (or reference through which the instance is ac-
cessed) is the same as the role the instance plays in the collaboration. When
the name and role aren’t identical, use instance/role:Class. E.g.: given tu-
tor/teacher:Person and lecturer/teacher:Person, an object of class Person, used

Introduction to UML Jun Hu

in the role of teacher, is called tutor in some portion of the code and lecturer
elsewhere in the code.

Messages that flow from one object to another are drawn next to the line,
with an arrow indicating direction. Arrowhead types have the same meaning
as in sequence diagrams. The message sequence is shown via a numbering
scheme. Message 1 is sent first. Messages 1.1, 1.2, etc., are sent by whatever
method handles message 1. Messages 1.1.1, 1.1.2, etc., are set by the method
that handles message 1.1, and so forth.

Guards are specified using the “Object Constraint Language”, a pseudo-
code that’s part of the UML specification. Syntactically, it’s more like Pascal
and Ada than Java and C++, but it’s readable enough. (The operators that
will trip you up are assignment [:=] equality [=] and not-equals [<>]). As in a
sequence diagram, an asterisk indicates iteration.

 I UML 1.x Diagrams I ♥ Activity Diagrams

• Process Flow
• Concurrency
• Swim lanes
• Signals and Exceptions

 I UML 1.x Diagrams I ♥ Activity Diagrams I Process Flow

i n t i = 5 ;
i n t j = 2 ;
i n t k = i ∗ j ;

f o r (i n t n = 1; n < k + 1; n++) {
System . out . p r i n t l n (" I t e r a t i o n # " + n) ;

}

t r y {
i n t read = System . i n . read () ;

} catch (IOExcept ion e) {
System . e r r . p r i n t l n (e . getMessage ()) ;

}

int i = 5

int j = 2

int k = i * j

int n = 1

[n < k + 1]

System.out.println("Iteration #" + n)

n++

[else]

int read = System.in.read()

Awaiting key press
key pressed IOException e

System.err.println(e.getMessage())

Initial state

Final state

Decision branch

Action state

Waiting state

Guard

condition

Event

Introduction to UML Jun Hu

In UML activity diagrams can be used to describe the logical flow of some
process or procedure. In coding terms, this would equate to program flow –
a concept we are all very familiar with ĺC so many aspects of activity diagrams
may seem familiar.

Some of the key elements of the notation are:

Actions discrete steps in the process, like the steps in the execution of a piece
of code. Actions are actually a special kind of state that is assumed to
happen instantaneously and, when completed, the process moves di-
rectly on to the next state automatically.

Transitions when a process moves from one state to another, it is called a
transition. In activity diagrams, the process transitions automatically
from one action to the next.

Guard conditions often in program flow we need to specify that the process
moves to one of a number of possible next steps depending on whether
some condition is true. We call this branching because the flow of exe-
cution follows a specific branch of the code. In activity diagrams, we can
show branching by having two or more possible transitions from the
same action, specifying a guard condition on each transition that tells us
when that specific branch is followed.

Waiting states in many applications, processes must wait for some kind of in-
put or system event before they can continue execution. For example,
our little program here waits for the user to press any key before it can
finish. In activity diagrams, we draw waiting states to show that execu-
tion of a process is paused until some event occurs. The process can
only transition to another action or waiting state in response to an event,
which is written next to the specific transition that event will trigger.

Start stat & end states every process must have a beginning and end (unless
it is designed to go on forever, of course!) The start state on an activity
diagram explicitly shows where the process begins, and can be used to
describe the system state at that point. A process can end in more than
one possible way, and therefore there may be several possible end states
on an activity diagram.

Introduction to UML Jun Hu

 I UML 1.x Diagrams I ♥ Activity Diagrams I Concurrency

p u b l i c c lass Example
implements Runnable {

p r i v a t e boolean running ;

p u b l i c s t a t i c vo id main (S t r i n g [] args) {

Example example = new Example () ;
Thread thread = new Thread (example) ;
example . running = t rue ;
thread . s t a r t () ;
wh i le (example . running) {

System . out . p r i n t l n (" wa i t i ng . . . ") ;
}

}

p u b l i c vo id run () {
f o r (i n t i = 1 ; i < 10000; i ++) { }
running = f a l s e ;

}
}

Example example = new Example();
Thread thread = new Thread(example);

example.running = true;

fork

Thread.start()

i=0

i++

[i<10000]

example.running = false

[else]

join

System.out.println("waiting...")

[example.running]
[else]

In an activity diagram we can easily show how one thread of execution
splits into two or more concurrent threads, and then synchronizes and con-
verges back into the original thread. A black synchronization bar is used to
show how a process forks into two or more concurrent processes, which then
join at another bar back into the original thread.

 I UML 1.x Diagrams I ♥ Activity Diagrams I Swim lanes

p u b l i c c lass ClassA {
p r i v a t e ClassB b = new ClassB () ;

p u b l i c vo id methodA () {
i n t i = 1 ;
i n t j = 2 ;
i n t k = i + j ;

i n t n = b . methodB (k) ;
System . out . p r i n t l n (n . t o S t r i n g ()) ;

}
}

p u b l i c c lass ClassB {
p r i v a t e ClassC c = new ClassC () ;

p u b l i c i n t methodB (i n t k) {
i n t b = k ∗ k ;
r e t u r n c . methodC (b) ;

}
}

p u b l i c c lass ClassC {
p u b l i c i n t methodC (i n t b) {

r e t u r n b − 1;
}

}

Introduction to UML Jun Hu

int i =1

int j = 2

int k = i + j

int n = b.methodB(k)

int b = k * k

return c.methodC(b)

return b - 1

System.out.println(n.toString())

: ClassA b : ClassB c : ClassC

Activities are arranged into vertical or horizontal zones delimited with lines.
Each zone represents a broad area of responsibility, typically implemented by
a set of classes or objects.

It is important to note here that the naming of variables should be local
to the scope of the owning object and method. So, the variable b declared by
the instance of ClassC is not the same object b associated to the instance of
ClassA. Also note that I have chosen argument names to match the names
of the variables assigned to those arguments – which makes the logic of the
process easier to follow. I could have declared methodB(int z), but without
the knowledge of that method’s signature return c.methodC(z) wouldn’t have
made a lot of sense – where did the variable z come from?

 I UML 1.x Diagrams I ♥ Activity Diagrams I Signals and Exceptions

• Signals

Generating signals: sent to out-
side process (Request Pay-
ment at left).

Accepting signals: received from
outside process (Payment Re-
ceived at left).

Timer signals: received when time
elapses or a set time arrives
(30 days . . . at left).

• Exceptions. Extraordinary errors
that you typically don’t detect with
explicit tests are indicated with a
“lightning bolt.”

Process order

Request Payment Payment Received

Ship Order

Cancel Order

30 dyas since

Payment requested

error

Send Error message

Introduction to UML Jun Hu

 I UML 1.x Diagrams I State Diagrams

= State Machine Diagrams in UML 2.0
• State transitions
• Transitions and Actions
• Sub States & History States

 I UML 1.x Diagrams I State Diagrams I State transitions

empty In credit Overdrawn

withdraw(amount)

deposit(amount)
deposit(amount)
[amount > balance]

deposit(amount)
[amount > 0 - balance]

withdraw(amount)
[amount=balance]

deposit(amount) [amount= 0 - balance]

Start state

deposit(amount:float)
withdraw(amount:float)

Balance: float = 0

Account

End state

eventtransition

Transition guard

Object state

In many examples, the behavior of an object changes dramatically when
its attribute values fall within a certain range. For example, what happens the
way an account behaves might differ dramatically when it is overdrawn.

In these cases, we can model an object’s behavior by considering what it
does in these discrete states, how an object can transition from one state to
another state and what actions are triggered when a state transition occurs.

Introduction to UML Jun Hu

 I UML 1.x Diagrams I State Diagrams I Transitions and Actions

empty In credit entry / send nasty letter
do / charge daily interest

Overdrawn

withdraw(amount) / balance := balance - amount

deposit(amount)
/balancd := amount

deposit(amount)
[amount > balance]

/balancd := amount - amount

deposit(amount)
[amount > 0 - balance]

/ balance := balance + amount

withdraw(amount)
[amount=balance]
/ balance := 0

deposit(amount) [amount= 0 - balance] / balance := 0

event [guard] / action

The most useful aspect of state transition diagrams (or state charts) is that we
can describe how certain events trigger certain actions. For example, when an
account becomes overdrawn we can show that a nasty letter must be sent to
the customer, and while the account remains overdrawn we must charge daily
interest.

Without going over the top, state transition diagrams can be a very pow-
erful way of describing object, subsystems or system behavior. Like object
diagrams, they are seldom utilized though. In UI-driven design we use a vari-
ation of state transition diagrams tomodel the logic of the user interface and to
build and validate a clear understanding of how the user and system interact.

Introduction to UML Jun Hu

 I UML 1.x Diagrams I State Diagrams I Sub States & History States

active

in credit overdrawn

emptyH

frozen

reactivate

freeze

history state

Sub state

super state

Its very com-
mon for objects to find themselves in more than on discrete state at a time.
For example, I can be tired and awake at the same time. I can also be rested and
awake at the same time. In these cases, tired and rested are sub states of awake
ĺC you can be neither if you’re not conscious!

In UML, we can draw state transition diagrams inside states to indicate
more interesting behavior going on whilst in that state.

If you draw a start state inside another state, that tells us that whenever the
super state is entered the object starts in that specific state. Having said that,
its not always desirable to start in exactly the same state every time an object
enters the super state.

You might want to show that the object “remembers” what state it was in
when it last exited the super state. We can use a history state to show that
when an object re-enters a composite state it returns to the state it was in the
moment it last exited that state. For example, if an account is overdrawn and
the account is frozen, when its reactivated you want to remember that the
account was overdrawn before it was frozen.

 I UML 1.x Diagrams I Component Diagrams

• Components and Dependencies
• Components Can Contain Components

Introduction to UML Jun Hu

 I UML 1.x Diagrams I Component Diagrams I Components and Dependencies

Customer.class

DomainLayer.jar

Invoice.class

Order.class

Customer

Invoice

Order

*

1

1..*

1

1

*

In UML, we can use component diagrams to describe the physical imple-
mentation of a system. In practical terms, a component is thought of as a
physical file like a .java source file, or a JAR, or an XML file and so on.
We can use dependencies to show how different components might be re-
lated to each other. For example, the DomainLayer.jar requires the files
Customer.class , Invoice.class and Order.class to be packaged
in a successful build.

We can also show how physical files are related to the logical model. In this
example, we’re describing how the source (.class) files implement classes
in the logical model.

 I UML 1.x Diagrams I Component Diagrams I Components Can Contain Components

WebApp.zip

DataLayer.jar
DomainLayer.jar

Customer.class

Invoice.class Order.class

Introduction to UML Jun Hu

In the Catalysis style of modeling, we can also describe how one compo-
nent may be made up of other components. In this example, we’re saying that
the DomainLayer JAR file contains the bytecode files Customer.class ,
Invoice.class and Order.class .

Another example of this might be a ZIP file that contains compressed files,
or a compound document that contains OLE objects (like a chart in a spread-
sheet).

 I UML 1.x Diagrams I Package Diagrams

/∗=================================∗ /
package n l . tue . i d ;

c lass ClassA {
}

/∗=================================∗ /
package n l . tue . i d . examples ;

c lass ClassB {
}

/∗=================================∗ /
package moreexamples ;

impor t n l . tue . i d . examples . ∗ ;

c lass ClassA {
p r i v a t e ClassB b ;

}

nl.tue.id

examples

ClassB
ClassA

moreexamples

ClassA

b
0..1

Just as we can organize our code into logical packages, we can groupmodel
elements in packages. In our example above, this allows us to distinguish
between nl.tue.id.ClassA and moreexamples.ClassA .

UML packages function in pretty much the same way as Java packages,
except that we can assign properties to packages that tell us more about them.
For example, one package might represent a subsystem.

Just as we can in Java, we can qualify the path to model elements using
this notation:

nl.tue.id::examples::ClassB
We can use dependencies to show how one package is dependant on an-

other. In this example, the dependency between
moreexamples
and

Introduction to UML Jun Hu

nl.tue.id::examples
tells us the moreexamples imports nl.tue.id::examples .

Packages can be very useful for spotting circular or cyclic package depen-
dencies, which we strive to avoid. They can also be very useful for giving an
overview of the system in terms of its different packages and the relationships
between them.

 I UML 1.x Diagrams I Deployment Diagrams

We can use deployment diagrams to show how in the physical system compo-
nents are deployed on different machines (called “nodes” in UML)

Database Server

DBMS

Web Server

IIS Services

Client Machine

Web Browser

LAN

TCP/IP

Deployment Node

Communication Channel

 I UML Views

• Use Case View
• Logical View
• Component View
• Concurrency View
• Deployment View

 I UML Views (2)

• Each view is a projection of the complete system

• Each view highlights particular aspects of the system

• Views are described by a number of diagrams

• No strict separation, so a diagram can be part of more than one view

Introduction to UML Jun Hu

Use Case

View

Component

View

Logical

View

Deployment

View

Concurrency

View

 I UML Views I Use Case View

• Shows the functionality of the system as perceived by external actors.

• Actors can be users or other systems.

• Described by use case and activity diagrams.

• The central view which drives the development of other views.

• Used by customers, designers, developers, testers.

Send Product

Place Recurring Order

Place Order

Create Account

Establish Credit

Shipper

Salesperson

Supervisor

System

Communication

Use Case

Actor

Dependencies

System boundary

Generalization <<include>>

<<extend>>

User enters the account and the password

User clicks the Create button

System creates the account

System confirms creation

[succeeded]

Error message

[else]

 I UML Views I Logical View

• Shows how the functionality of the system is designed / provided.

• Uses class and object diagrams to represent the static structure.

• Uses state, sequence, collaboration, and activity diagrams for dynamic
behavior.

• Used by designers and developers.

Introduction to UML Jun Hu

A

B C

I

D

0..*

0..1

1..*

1

: Account

Balance = 400.00

Limit = 250.00

: Customer

Name = “Jason Gorman”

accounts

holders

empty In credit Overdrawn

withdraw(amount)

deposit(amount)
deposit(amount)
[amount > balance]

deposit(amount)
[amount > 0 - balance]

withdraw(amount)
[amount=balance]

deposit(amount) [amount= 0 - balance]

Start state

deposit(amount:float)
withdraw(amount:float)

Balance: float = 0

Account

End state

eventtransition

Transition guard

Object state

: ClassA b : ClassB c : ClassC

MethodB()
MethodC(1)

Object with
identity c of type
ClassC

Focus of control

Message from b to c (b calls a
method on c) with argument = 1.
Return value is assigned to
variable result.

Timeline
denotes lifetime of an
object

Flo
w
 o
f tim

e

Result :int

window:
UserInterface

aChain:
HotelChain

1.1: makeReservation()

aHotel:
Hotel

1.1.1:MakeReservation()

aReservation:
Reservation

1.1.1.2:[isRoom]

1.1.1.1:*[for each day] isRoom:=available()

aNotice:
Confirmation

1.1.1.2.1

message

object

Sequence number
Self link

Iteration

int i = 5

int j = 2

int k = i * j

int n = 1

[n < k + 1]

System.out.println("Iteration #" + n)

n++

[else]

int read = System.in.read()

Awaiting key press
key pressed IOException e

System.err.println(e.getMessage())

Initial state

Final state

Decision branch

Action state

Waiting state

Guard

condition

Event

 I UML Views I Component View

• Shows the organization of the code components and their dependencies.

• Described by component diagrams.

• Used by developers.

Customer.class

DomainLayer.jar

Invoice.class

Order.class

Customer

Invoice

Order

*

1

1..*

1

1

*

 I UML Views I Concurrency View

• Addresses the problems with communication and synchronization for a
concurrent system.

• Described by state, sequence, collaboration, activity, deployment, and
component diagrams.

• Used by developers and system integrators.

empty In credit Overdrawn

withdraw(amount)

deposit(amount)
deposit(amount)
[amount > balance]

deposit(amount)
[amount > 0 - balance]

withdraw(amount)
[amount=balance]

deposit(amount) [amount= 0 - balance]

Start state

deposit(amount:float)
withdraw(amount:float)

Balance: float = 0

Account

End state

eventtransition

Transition guard

Object state

: ClassA b : ClassB c : ClassC

MethodB()
MethodC(1)

Object with
identity c of type
ClassC

Focus of control

Message from b to c (b calls a
method on c) with argument = 1.
Return value is assigned to
variable result.

Timeline
denotes lifetime of an
object

Flo
w
 o
f tim

e

Result :int

window:
UserInterface

aChain:
HotelChain

1.1: makeReservation()

aHotel:
Hotel

1.1.1:MakeReservation()

aReservation:
Reservation

1.1.1.2:[isRoom]

1.1.1.1:*[for each day] isRoom:=available()

aNotice:
Confirmation

1.1.1.2.1

message

object

Sequence number
Self link

Iteration

int i = 5

int j = 2

int k = i * j

int n = 1

[n < k + 1]

System.out.println("Iteration #" + n)

n++

[else]

int read = System.in.read()

Awaiting key press
key pressed IOException e

System.err.println(e.getMessage())

Initial state

Final state

Decision branch

Action state

Waiting state

Guard

condition

Event

Customer.class

DomainLayer.jar

Invoice.class

Order.class

Customer

Invoice

Order

*

1

1..*

1

1

*

Database Server

DBMS

Web Server

IIS Services

Client Machine

Web Browser

LAN

TCP/IP

Deployment Node

Communication Channel

 I UML Views I Deployment View

• Shows the deployment of the system into the physical architecture with
computers and devices.

Introduction to UML Jun Hu

• Represented by the deployment diagram.

• Used by developers, system integrators, and testers.

Database Server

DBMS

Web Server

IIS Services

Client Machine

Web Browser

LAN

TCP/IP

Deployment Node

Communication Channel

 I Where to start?

Must:
• User case diagrams
• Class diagrams
• Sequence diagrams
• Activity diagrams
Optional:
• Object diagrams
• State diagrams
• Collaboration diagrams
Gadgets:
• Component diagrams
• Deployment diagrams

UML 2.0 Diagram

Structure

Diagram

Behavior

Diagram

Class Diagram

Component

Diagram

Composite

Structure

Diagram

Deployment

Diagram

Object Diagram

Package

Diagram

State Machine

Diagram

Interaction

Diagram

Use Case

Diagram

Activity

Diagram

Communication

Diagram

Interaction

Overview

Sequence

Diagram
Timing Diagram

 I Tools

• Microsoftr Visior (with UML stencils), available as campus software.

• ArgoUML: open source software.

• IBMr Rational Roser

• Borlandr Togetherr

• Sparx Systemsr Enterprise Architectr
...
...

Introduction to UML Jun Hu

• The last, the cheapest, the fastest, the most convenient tools are . . .
Pen & Paper!

	Introduction
	So you have done Java A&B
	Brainwashing
	UML: why yet another language?
	UML History
	Standardization: OMG
	General Goals of UML
	Overview of UML 2.0

	UML 1.x Diagrams
	 Use Case Diagrams
	Overview
	What is a use case?
	Actors In Use Cases
	Example of a use case
	A POS example (1)
	A POS example (2)
	Use Case Best Practices
	Common Use Case Pitfalls

	 Class Diagrams
	Classes
	Attributes
	Operations
	Visibility
	Class & Instance Scope
	Bi-directional Associations
	Association names & role defaults
	Multiplicity & Collections
	Aggregation & Composition
	Generalization
	Overriding Operations
	Interface & Realization
	Abstract Classes & Abstract Operations
	More on Generalization
	Dependencies
	Qualified Associations
	Association Classes
	Associations, Visibility & Scope
	Information Hiding
	Exercise

	Object Diagrams & Filmstrips
	Instances of Class Diagrams
	Object State
	Filmstrips

	 Sequence Diagrams
	Why sequence diagrams
	Messages & Timelines
	Object Creation & Destruction
	Collections and Iterations
	Conditional Messages
	Class Operations
	Recursion

	Collaboration Diagrams
	 Activity Diagrams
	Process Flow
	Concurrency
	Swim lanes
	Signals and Exceptions

	State Diagrams
	State transitions
	Transitions and Actions
	Sub States & History States

	Component Diagrams
	Components and Dependencies
	Components Can Contain Components

	Package Diagrams
	Deployment Diagrams

	UML Views
	Use Case View
	Logical View
	Component View
	Concurrency View
	Deployment View

	Where to start?
	Tools

