
UML Tutorial: Complex Transitions

Robert C. Martin

Engineering Notebook Column

C++ Report, September 98

In my last column I talked about UML Finite State Machine diagrams. In this column we will be
discussing multi-threaded state machines, and how to model them in UML.

Multithreaded state machines are not new. For years they have been modeled using petri-nets. UML has
borrowed many of the petri-net concepts and mixed them with the notation for regular state machines. The
result is a very complete and convenient language for expressing state machines of many different varieties,
either single threaded or multi-threaded.

The Toaster

Lets begin our discussion by looking at the behavior of a simple machine that requires a multithreaded
FSM – a toaster. Our toaster has two slots. Each can hold a slice of bread to be toasted. If only one slice is
to be toasted, it must be placed in slot 1. The user places the bread in the slots and then depresses the lever.
The bread descends into the toaster. Heating filaments toast the bread. When the toast is complete, the
carrier pops up, and the toast is made available to the user.

How do we know when the toast is done? There is a color selector knob on the toaster. A sensor in slot 1
measures the color of the toast. When the toast has acquired the color that the knob is set to, the toast is
complete. Alternatively, a timer will terminate the toasting if the toast takes “too long” to reach the
appropriate color (e.g. a white bathroom tile was placed in the slot). Alternatively, if the color changes too
fast, then the toasting is aborted. This protects us from starting fires when someone puts a piece of paper in
the slot.

Toasting best occurs at a particular temperature. If too hot, the surface of the bread scorches but the inside
remains too soft. If too cold, the toasting takes too long and the bread dries out too much. Thus, the
temperature has to be carefully regulated. Moreover, as the color of the bread changes, the optimum
toasting temperature rises due to decreased reflectivity of the bread. Thus, the temperature is a function of
color.

Figure 1 shows the multi-threaded state machine that expresses the control logic of the toaster. Like all
state machines in UML, this one begins at the initial pseudo-state, (the black ball) and immediately
transitions into the Idle state.

When the user presses the lever to start the toaster, the machine receives the ‘Start’ event. This event
triggers a complex transition. A complex transition is a transition that either splits or joins threads. The
notation used is the heavy bar that the ‘Start’ arrow points to. This bar is called a synchronization bar.

A synchronization bar can have many incoming arrows, and many outgoing arrows. Its semantics are
relatively simple. The arrows that terminate on the bar must come from states. These state are called
source states. The arrows that leave the bar must terminate on states. These states are called the
destination states. A complex transition fires if, and only if, all of its source states are currently occupied.
Once the complex transition fires, all the source states become unoccupied, and all the destination states
become occupied.

Idle

Start

entry/HeaterOff()

Heater Off

entry/HeaterOn()

Heater On

Check

Check
Temperature

Check

Too Hot

Too Cold

Waiting to Check
Color

Check Color
Change Rate

Check absolute
color

Check

Read Color
Sensor

OK

Bad

Too Light

Too Dark

DoneDone

Done

/ Eject

Timer Running

/ ResetTimer

Expired

Done /
StopTimer

Done

Done

Figure 1
H

Astute readers will notice that the above definition implies that the state machine in Figure 1 will not wait
for the ‘Start’ event. After all, as soon as the Idle state is occupied, the complex transition will be
triggered, and its three destination states will become occupied. Actually, I should have drawn the complex
transition in Figure 1 as shown in Figure 2. Notice the that the ‘Start’ transition causes an unnamed state
to be occupied; which then triggers the complex transition. However, I consider this to be a nuisance. So
whenever I draw an arrow with an event into a synchronization bar, I presume it means that the event will
cause a transition to an unnamed source state of the complex transition.

Idle Start

entry/HeaterOff()

Heater OffWai t ing to Check
Color

T imer Running

/ ResetTimer

H
Figure 2

Once the start event occurs, and the complex transition fires, three new threads are begun. The first, and
simplest of these is the timer thread. Notice the “/ ResetTimer” action attached to the arrow that connects
the synchronization bar to the ‘Timer Running’ state. This means that the ResetTimer function will be
called when the complex transition fires. The ResetTimer function restarts the timer, and sets it to expire
after too much time has elapsed.

When the timer expires, the ‘Expired’ event takes place. Notice the arrow labeled with this event
terminates on a pentagon named ‘Done’. This pentagon is a ‘Signal’. It means that the ‘Done’ signal will
be sent. If you look around on Figure 1, you will see a number of transitions that are labeled with the
‘Done’ event.

Actually, I’m taking a bit of license here. The ‘Done’ signal should be sent to an object. Indeed, there
should be a dashed line from the signal icon to the object which recieves it. See Figure 3.

Expired

Done

Timer Running

+ Done

t:Toaster

F igure 3

Alternatively, I could have used a more compact syntax that does not involve the Signal icon. The Expired
event could have been written: “Expired / ^t.Done()”. The ‘caret’ symbol (^) begins a send clause. A send
clause simply causes a message to be sent to an object.

Returning to Figure 1. Once the ‘Done’ signal has been sent, An unnamed state becomes occupied. This
state is a source state to the synchronization bar at the bottom of Figure 1. Thus, this thread will wait here
until the other three source states of that synchronization bar are occupied.

Why the unnamed state? Why not just draw an arrow from the Signal icon to the synchronization bar?
Because there is another way out of the TimerRunning state. If the Done event is received, then a transition
occurs from the TimerRunning state to the unnamed state . Without the unnamed state, I would have had

two distinct arrows from this thread terminating on the synchronization bar. This is legal, since both
arrows come from the same source state, namely: ‘TimerRunning’; but it could be confusing since it would
make it appear as though the synchronization bar would have four incoming arrows but only three source
states. Thus, to keep the number arrows incoming to the synchronization bar equal to the number of source
states to the complex transition, I use the unnamed states to merge the transitions. It’s simply a matter of
style.

The second thread that gets started by the ‘Start’ event is the thread that controls the heater. The heater
begins in the ‘Heater Off’ state. Periodically, (perhaps twenty times per second) the ‘Check’ even occurs.
Notice that the arrow labeled ‘Check’ points to an icon of a somewhat different shape. This is an activity.
Activities are special kinds of states. They a single transition leading away from them. When they are
entered, they execute an action, which is typically the name of the activity. When the action is complete
the single exit transition is triggered. Thus, activities are very much like processes on a flowchart.

The CheckTemperature activity causes the temperature of the inside of the toaster to be compared with the
appropriate set point. This set point depends upon the color of the toast, which is why there is a dashed
arrow from the CheckTemperature activity to the ReadColorSensor activity. More on that later.

Once the temperature has been checked, the exit transition leads us to a small diamond. This is a decision,
similar to the ones found on flowcharts. The decision splits the flow into two directions. If the temperature
was too cold, then the transition leads to the ‘Heater On’ state. Otherwise it leads to the ‘Heater Off’ state.

The entire thread is held in an unnamed superstate that has a single transition leading out of it. This
transition is triggered by the ‘Done’ event, and leads to the bottommost synchronization bar.

The final thread is the color checking thread. It begins in the ‘Waiting to Check Color’ state. When a
‘Check’ event occurs, the ‘Read Color Sensor’ activity is begun. We presume that this activity squirrels
away the color reading for the ‘Check Temperature’ activity to use later. Once the color has been read, two
more threads are started. One checks the absolute color of the toast, and the other checks the rate of color
change. Both threads can signal the ‘Done’ event if either the toast has reached its target color, or if the
toast does not seem to be changing color in the proper manner.

The two threads lead to a synchronization bar which waits until both are complete, and then causes the
‘Waiting to check Color’ state to be reentered. Thus, this thread loops nicely, once per ‘Check’ event, and
then waits in the ‘Waiting to Check Color’ state.

The ‘Waiting to Check Color’ state can be exited by a ‘Done’ event. The resulting transition terminates on
the bottommost synchronization bar. Thus, the only way that the complex transition mediated by that
synchronization bar will every fire, is when all three threads finish processing the ‘Done’ event. When this
occurs, there is a final transition back to the ‘Idle’ state that is accompanied by an ‘Eject’ action.

Conclusion

The combination of complex transitions, activities, and decisions makes the UML state machine notation
extremely rich. In one stroke, it combines normal state machines, petri-nets, and flowcharts into a single,
easy to use notation.

The next column in this series will deal with use cases, use case diagrams, and their relationship to the rest
of UML.

