
JJ J N I II 1/27JJ J N I II 1/27

Object Reloaded

Jun Hu
Department of Industrial Design

Eindhoven University of Technology
j.hu@tue.nl

http://id00243.id.tue.nl/ObjectOrientationAndDesignPatterns

7th March 2005

http://id00243.id.tue.nl/ObjectOrientationAndDesignPatterns


JJ J N I II 2/27JJ J N I II 2/27

Object Reloaded Jun Hu

• Introduction: What’s the big deal?
• The basic OO principle
• Encapsulation
• Inheritance
• Again, what’s the good of it?
• Structured Development
• Object-orientation: A Consistent Model
• Rapid Application Development
• A Simplified Practical Process



JJ J N I II 3/27JJ J N I II 3/27

Object Reloaded Jun Hu

 I Introduction: What’s the big deal?

Object-Orientation is a different way of looking at the world.



JJ J N I II 3/27JJ J N I II 3/27

Object Reloaded Jun Hu

 I Introduction: What’s the big deal?

Object-Orientation is a different way of looking at the world.

Suppose you’re at the dinner table, you would like some salt, and the salt
shaker is inconveniently located at the other end of the table.



JJ J N I II 3/27JJ J N I II 3/27

Object Reloaded Jun Hu

 I Introduction: What’s the big deal?

Object-Orientation is a different way of looking at the world.

Suppose you’re at the dinner table, you would like some salt, and the salt
shaker is inconveniently located at the other end of the table.

You could try the Procedural way:
• Please remove your right hand from your wine glass;



JJ J N I II 3/27JJ J N I II 3/27

Object Reloaded Jun Hu

 I Introduction: What’s the big deal?

Object-Orientation is a different way of looking at the world.

Suppose you’re at the dinner table, you would like some salt, and the salt
shaker is inconveniently located at the other end of the table.

You could try the Procedural way:
• Please remove your right hand from your wine glass;
• move it to the left until it contacts the salt shaker;



JJ J N I II 3/27JJ J N I II 3/27

Object Reloaded Jun Hu

 I Introduction: What’s the big deal?

Object-Orientation is a different way of looking at the world.

Suppose you’re at the dinner table, you would like some salt, and the salt
shaker is inconveniently located at the other end of the table.

You could try the Procedural way:
• Please remove your right hand from your wine glass;
• move it to the left until it contacts the salt shaker;
• grasp it;



JJ J N I II 3/27JJ J N I II 3/27

Object Reloaded Jun Hu

 I Introduction: What’s the big deal?

Object-Orientation is a different way of looking at the world.

Suppose you’re at the dinner table, you would like some salt, and the salt
shaker is inconveniently located at the other end of the table.

You could try the Procedural way:
• Please remove your right hand from your wine glass;
• move it to the left until it contacts the salt shaker;
• grasp it;
• lift it from the table;



JJ J N I II 3/27JJ J N I II 3/27

Object Reloaded Jun Hu

 I Introduction: What’s the big deal?

Object-Orientation is a different way of looking at the world.

Suppose you’re at the dinner table, you would like some salt, and the salt
shaker is inconveniently located at the other end of the table.

You could try the Procedural way:
• Please remove your right hand from your wine glass;
• move it to the left until it contacts the salt shaker;
• grasp it;
• lift it from the table;
• move it in a natural arc in my direction;



JJ J N I II 3/27JJ J N I II 3/27

Object Reloaded Jun Hu

 I Introduction: What’s the big deal?

Object-Orientation is a different way of looking at the world.

Suppose you’re at the dinner table, you would like some salt, and the salt
shaker is inconveniently located at the other end of the table.

You could try the Procedural way:
• Please remove your right hand from your wine glass;
• move it to the left until it contacts the salt shaker;
• grasp it;
• lift it from the table;
• move it in a natural arc in my direction;
• stop when it contacts my hand;



JJ J N I II 3/27JJ J N I II 3/27

Object Reloaded Jun Hu

 I Introduction: What’s the big deal?

Object-Orientation is a different way of looking at the world.

Suppose you’re at the dinner table, you would like some salt, and the salt
shaker is inconveniently located at the other end of the table.

You could try the Procedural way:
• Please remove your right hand from your wine glass;
• move it to the left until it contacts the salt shaker;
• grasp it;
• lift it from the table;
• move it in a natural arc in my direction;
• stop when it contacts my hand;
• wait until my hand has closed around it;



JJ J N I II 3/27JJ J N I II 3/27

Object Reloaded Jun Hu

 I Introduction: What’s the big deal?

Object-Orientation is a different way of looking at the world.

Suppose you’re at the dinner table, you would like some salt, and the salt
shaker is inconveniently located at the other end of the table.

You could try the Procedural way:
• Please remove your right hand from your wine glass;
• move it to the left until it contacts the salt shaker;
• grasp it;
• lift it from the table;
• move it in a natural arc in my direction;
• stop when it contacts my hand;
• wait until my hand has closed around it;
• then release it.



JJ J N I II 3/27JJ J N I II 3/27

Object Reloaded Jun Hu

 I Introduction: What’s the big deal?

Object-Orientation is a different way of looking at the world.

Suppose you’re at the dinner table, you would like some salt, and the salt
shaker is inconveniently located at the other end of the table.

You could try the Procedural way:
• Please remove your right hand from your wine glass;
• move it to the left until it contacts the salt shaker;
• grasp it;
• lift it from the table;
• move it in a natural arc in my direction;
• stop when it contacts my hand;
• wait until my hand has closed around it;
• then release it.

Or better, the “Object-oriented” way:
• say to your friend “Please pass me the salt”, and she would do so.



JJ J N I II 4/27JJ J N I II 4/27

Object Reloaded Jun Hu

 I The basic OO principle

Objects (“salt-passers”) are responsible for their own actions in responding to re-
quests from clients (“salt-wanters”).



JJ J N I II 4/27JJ J N I II 4/27

Object Reloaded Jun Hu

 I The basic OO principle

Objects (“salt-passers”) are responsible for their own actions in responding to re-
quests from clients (“salt-wanters”).

Let’s try another example: Suppose you’re writing a software system for a
bank, and you need to know the balance of a particular customer’s account.



JJ J N I II 4/27JJ J N I II 4/27

Object Reloaded Jun Hu

 I The basic OO principle

Objects (“salt-passers”) are responsible for their own actions in responding to re-
quests from clients (“salt-wanters”).

Let’s try another example: Suppose you’re writing a software system for a
bank, and you need to know the balance of a particular customer’s account.

Procedural Starting with the balance at the start of the month, read each
transaction in turn, and add or subtract its value as appropriate.



JJ J N I II 4/27JJ J N I II 4/27

Object Reloaded Jun Hu

 I The basic OO principle

Objects (“salt-passers”) are responsible for their own actions in responding to re-
quests from clients (“salt-wanters”).

Let’s try another example: Suppose you’re writing a software system for a
bank, and you need to know the balance of a particular customer’s account.

Procedural Starting with the balance at the start of the month, read each
transaction in turn, and add or subtract its value as appropriate.

Object-oriented There will be an object for the customer’s account, and you
simply ask it to return you the balance.



JJ J N I II 4/27JJ J N I II 4/27

Object Reloaded Jun Hu

 I The basic OO principle

Objects (“salt-passers”) are responsible for their own actions in responding to re-
quests from clients (“salt-wanters”).

Let’s try another example: Suppose you’re writing a software system for a
bank, and you need to know the balance of a particular customer’s account.

Procedural Starting with the balance at the start of the month, read each
transaction in turn, and add or subtract its value as appropriate.

Object-oriented There will be an object for the customer’s account, and you
simply ask it to return you the balance.

Remember the single most important principle of object-orientation: Objects
are responsible for their own actions.



JJ J N I II 4/27JJ J N I II 4/27

Object Reloaded Jun Hu

 I The basic OO principle

Objects (“salt-passers”) are responsible for their own actions in responding to re-
quests from clients (“salt-wanters”).

Let’s try another example: Suppose you’re writing a software system for a
bank, and you need to know the balance of a particular customer’s account.

Procedural Starting with the balance at the start of the month, read each
transaction in turn, and add or subtract its value as appropriate.

Object-oriented There will be an object for the customer’s account, and you
simply ask it to return you the balance.

Remember the single most important principle of object-orientation: Objects
are responsible for their own actions. And it is called “Encapsulation”



JJ J N I II 5/27JJ J N I II 5/27

Object Reloaded Jun Hu

 IEncapsulation

Procedural thinking is based on performing actions on data
Object-orientation is based on the data (objects) performing actions on themselves

• Model Real-World Objects
• Isolate Knowledge
• Protect System from Change
• Use Behavior from Other Objects



JJ J N I II 6/27JJ J N I II 6/27

Object Reloaded Jun Hu

 I Encapsulation IModel Real-World Objects

• we’re describing objects in the real world more closely, you don’t have
to give detailed instructions to a friend to pass you the salt (because she
knows how to do it).

• Structured analysis also models the real world. The difference is that
these methods focus on data flow, while object-oriented techniques focus
on objects.

• The advantage of modeling objects in the real world is that you reduce
the amount of work you have to do when your requirements change

• Why?



JJ J N I II 6/27JJ J N I II 6/27

Object Reloaded Jun Hu

 I Encapsulation IModel Real-World Objects

• we’re describing objects in the real world more closely, you don’t have
to give detailed instructions to a friend to pass you the salt (because she
knows how to do it).

• Structured analysis also models the real world. The difference is that
these methods focus on data flow, while object-oriented techniques focus
on objects.

• The advantage of modeling objects in the real world is that you reduce
the amount of work you have to do when your requirements change

• Why? Because, as a rule, objects in the real world don’t change (and
even when they do, they don’t change much)



JJ J N I II 7/27JJ J N I II 7/27

Object Reloaded Jun Hu

 I Encapsulation I Isolate Knowledge

The knowledge of how a service is performed by an object is kept with the
object itself.

• Your obliging friend picks up the salt and passes it to you.

• Another friend might have chosen to slide it across the table.

• Another might have picked it up, stood up, walked around the table and
handed it to you.

• Yet another might have checked the salt shaker, found it empty, stood up,
walked to the cupboard, refilled the shaker, and then passed it to you.



JJ J N I II 7/27JJ J N I II 7/27

Object Reloaded Jun Hu

 I Encapsulation I Isolate Knowledge

The knowledge of how a service is performed by an object is kept with the
object itself.

• Your obliging friend picks up the salt and passes it to you.

• Another friend might have chosen to slide it across the table.

• Another might have picked it up, stood up, walked around the table and
handed it to you.

• Yet another might have checked the salt shaker, found it empty, stood up,
walked to the cupboard, refilled the shaker, and then passed it to you.

The point is that if your objective was to get the salt from your friend, you
don’t care exactly how your friend gets it for you.



JJ J N I II 8/27JJ J N I II 8/27

Object Reloaded Jun Hu

 I Encapsulation IProtect System from Change

This separation of what from how is important for another reason - it makes
the system easier to change later.



JJ J N I II 8/27JJ J N I II 8/27

Object Reloaded Jun Hu

 I Encapsulation IProtect System from Change

This separation of what from how is important for another reason - it makes
the system easier to change later.

• Look howmuch detailed knowledge about salt-passing you’re using tomake your request.

• You’re not only making a request, you’re also insisting that it be carried out in a specific
way.

• If your friend later comes up with a different way of passing the salt (e.g. balancing it
on two toothpicks), then you (and everybody else) will have to change the way you make
your request.

• If, on the other hand, you leave it up to her to decide how to pass the salt, if she comes
up with a new, more effective, more efficient, faster, cheaper, funnier, or more creative
method, you still get your salt.



JJ J N I II 8/27JJ J N I II 8/27

Object Reloaded Jun Hu

 I Encapsulation IProtect System from Change

This separation of what from how is important for another reason - it makes
the system easier to change later.

• Look howmuch detailed knowledge about salt-passing you’re using tomake your request.

• You’re not only making a request, you’re also insisting that it be carried out in a specific
way.

• If your friend later comes up with a different way of passing the salt (e.g. balancing it
on two toothpicks), then you (and everybody else) will have to change the way you make
your request.

• If, on the other hand, you leave it up to her to decide how to pass the salt, if she comes
up with a new, more effective, more efficient, faster, cheaper, funnier, or more creative
method, you still get your salt.

Customer requirements change all the time, and your product needs to change
with them.



JJ J N I II 9/27JJ J N I II 9/27

Object Reloaded Jun Hu

 I Encapsulation IUse Behavior from Other Objects

One more advantage of encapsulation is something called polymorphism.



JJ J N I II 9/27JJ J N I II 9/27

Object Reloaded Jun Hu

 I Encapsulation IUse Behavior from Other Objects

One more advantage of encapsulation is something called polymorphism.
More than one kind of object can fulfill a request. The requestor doesn’t
know and doesn’t care which kind of object actually fulfilled a particular re-
quest.



JJ J N I II 9/27JJ J N I II 9/27

Object Reloaded Jun Hu

 I Encapsulation IUse Behavior from Other Objects

One more advantage of encapsulation is something called polymorphism.
More than one kind of object can fulfill a request. The requestor doesn’t
know and doesn’t care which kind of object actually fulfilled a particular re-
quest.

• When you say "Pass the salt", your friend gives it to you.

• Or it could be that somebody from the other side of the table reaches over and hands it
to you.

• Or perhaps your well-trained Labrador retriever jumps up, grabs the salt shaker in its
mouth, and brings it to you.

• Or maybe you have invited the town robot over to dinner that night, and it reaches over
with its metallic arm to pass you the salt.



JJ J N I II 9/27JJ J N I II 9/27

Object Reloaded Jun Hu

 I Encapsulation IUse Behavior from Other Objects

One more advantage of encapsulation is something called polymorphism.
More than one kind of object can fulfill a request. The requestor doesn’t
know and doesn’t care which kind of object actually fulfilled a particular re-
quest.

• When you say "Pass the salt", your friend gives it to you.

• Or it could be that somebody from the other side of the table reaches over and hands it
to you.

• Or perhaps your well-trained Labrador retriever jumps up, grabs the salt shaker in its
mouth, and brings it to you.

• Or maybe you have invited the town robot over to dinner that night, and it reaches over
with its metallic arm to pass you the salt.

Does it matter? No. The end result is the same - a salt shaker in your hand.



JJ J N I II 9/27JJ J N I II 9/27

Object Reloaded Jun Hu

 I Encapsulation IUse Behavior from Other Objects

One more advantage of encapsulation is something called polymorphism.
More than one kind of object can fulfill a request. The requestor doesn’t
know and doesn’t care which kind of object actually fulfilled a particular re-
quest.

• When you say "Pass the salt", your friend gives it to you.

• Or it could be that somebody from the other side of the table reaches over and hands it
to you.

• Or perhaps your well-trained Labrador retriever jumps up, grabs the salt shaker in its
mouth, and brings it to you.

• Or maybe you have invited the town robot over to dinner that night, and it reaches over
with its metallic arm to pass you the salt.

Does it matter? No. The end result is the same - a salt shaker in your hand.
That’s polymorphism for you.



JJ J N I II 10/27JJ J N I II 10/27

Object Reloaded Jun Hu

 I Inheritance

In the real world, we often classify things by how similar they are to each
other. By classifying kinds of objects by their similarities, we can talk about
their common properties.



JJ J N I II 10/27JJ J N I II 10/27

Object Reloaded Jun Hu

 I Inheritance

In the real world, we often classify things by how similar they are to each
other. By classifying kinds of objects by their similarities, we can talk about
their common properties. Let’s take mountains, for example.
• If you and I both understand the concept of “a mountain” even vaguely as a pretty big
pile of earth with a pointy bit at the top, then we can communicate pretty effectively about
mountains.



JJ J N I II 10/27JJ J N I II 10/27

Object Reloaded Jun Hu

 I Inheritance

In the real world, we often classify things by how similar they are to each
other. By classifying kinds of objects by their similarities, we can talk about
their common properties. Let’s take mountains, for example.
• If you and I both understand the concept of “a mountain” even vaguely as a pretty big
pile of earth with a pointy bit at the top, then we can communicate pretty effectively about
mountains.

• So we understand what all mountains have in common, but of course mountains like
Everest are also different from each other . So we might now want to talk about a volcanic
mountain. So we simply define what makes it so special: Hot red liquid can flow out of
the pointy bit.



JJ J N I II 10/27JJ J N I II 10/27

Object Reloaded Jun Hu

 I Inheritance

In the real world, we often classify things by how similar they are to each
other. By classifying kinds of objects by their similarities, we can talk about
their common properties. Let’s take mountains, for example.
• If you and I both understand the concept of “a mountain” even vaguely as a pretty big
pile of earth with a pointy bit at the top, then we can communicate pretty effectively about
mountains.

• So we understand what all mountains have in common, but of course mountains like
Everest are also different from each other . So we might now want to talk about a volcanic
mountain. So we simply define what makes it so special: Hot red liquid can flow out of
the pointy bit.

• Here’s the crucial point: To understand about volcanic mountains, we only need to add
to our existing knowledge of mountains. We can say that “volcanic mountains” inherit
all the properties of “mountains”, and then adds its own properties.



JJ J N I II 10/27JJ J N I II 10/27

Object Reloaded Jun Hu

 I Inheritance

In the real world, we often classify things by how similar they are to each
other. By classifying kinds of objects by their similarities, we can talk about
their common properties. Let’s take mountains, for example.
• If you and I both understand the concept of “a mountain” even vaguely as a pretty big
pile of earth with a pointy bit at the top, then we can communicate pretty effectively about
mountains.

• So we understand what all mountains have in common, but of course mountains like
Everest are also different from each other . So we might now want to talk about a volcanic
mountain. So we simply define what makes it so special: Hot red liquid can flow out of
the pointy bit.

• Here’s the crucial point: To understand about volcanic mountains, we only need to add
to our existing knowledge of mountains. We can say that “volcanic mountains” inherit
all the properties of “mountains”, and then adds its own properties.

That’s inheritance for you.



JJ J N I II 11/27JJ J N I II 11/27

Object Reloaded Jun Hu

 I Inheritance

Let’s look at a software example. Suppose you’ve been asked to write a soft-
ware system to keep track of all a bank’s customers, and you’re in the process
of designing a "Bank Customer" object.



JJ J N I II 11/27JJ J N I II 11/27

Object Reloaded Jun Hu

 I Inheritance

Let’s look at a software example. Suppose you’ve been asked to write a soft-
ware system to keep track of all a bank’s customers, and you’re in the process
of designing a "Bank Customer" object.

• Suddenly you remember that in your previous system, you already have a “Customer”
object, with properties like: name, postal address, phone number, fax number, and so
on.



JJ J N I II 11/27JJ J N I II 11/27

Object Reloaded Jun Hu

 I Inheritance

Let’s look at a software example. Suppose you’ve been asked to write a soft-
ware system to keep track of all a bank’s customers, and you’re in the process
of designing a "Bank Customer" object.

• Suddenly you remember that in your previous system, you already have a “Customer”
object, with properties like: name, postal address, phone number, fax number, and so
on.

• In building your Bank Customer object, you simply re-use all of the Customer object,
and then add the new properties - say, credit rating and security password..



JJ J N I II 11/27JJ J N I II 11/27

Object Reloaded Jun Hu

 I Inheritance

Let’s look at a software example. Suppose you’ve been asked to write a soft-
ware system to keep track of all a bank’s customers, and you’re in the process
of designing a "Bank Customer" object.

• Suddenly you remember that in your previous system, you already have a “Customer”
object, with properties like: name, postal address, phone number, fax number, and so
on.

• In building your Bank Customer object, you simply re-use all of the Customer object,
and then add the new properties - say, credit rating and security password..

In OO jargon, Bank Customer inherits the properties of Customer (or is de-
rived from Customer).



JJ J N I II 11/27JJ J N I II 11/27

Object Reloaded Jun Hu

 I Inheritance

Let’s look at a software example. Suppose you’ve been asked to write a soft-
ware system to keep track of all a bank’s customers, and you’re in the process
of designing a "Bank Customer" object.

• Suddenly you remember that in your previous system, you already have a “Customer”
object, with properties like: name, postal address, phone number, fax number, and so
on.

• In building your Bank Customer object, you simply re-use all of the Customer object,
and then add the new properties - say, credit rating and security password..

In OO jargon, Bank Customer inherits the properties of Customer (or is de-
rived from Customer).

• It allows us to capture the similarities and the differences between
classes of objects.

• It can increase reusability greatly.



JJ J N I II 12/27JJ J N I II 12/27

Object Reloaded Jun Hu

 IAgain, what’s the good of it?

Object-oriented techniques can help software/product development in quite
a few areas:
• Modeling of real-world objects makes it easier to describe and commu-
nicate behavior.

• Encapsulation of knowledgemeans that behavior can be isolated. This in
turnmeans that changes in requirements can be accommodated without
affecting the entire system.

• Inheritance allows us to re-use objects that have been created already.



JJ J N I II 12/27JJ J N I II 12/27

Object Reloaded Jun Hu

 IAgain, what’s the good of it?

Object-oriented techniques can help software/product development in quite
a few areas:
• Modeling of real-world objects makes it easier to describe and commu-
nicate behavior.

• Encapsulation of knowledgemeans that behavior can be isolated. This in
turnmeans that changes in requirements can be accommodated without
affecting the entire system.

• Inheritance allows us to re-use objects that have been created already.

These are all good things , but none of these is the most significant impact
of object-orientation on the design and development process.



JJ J N I II 13/27JJ J N I II 13/27

Object Reloaded Jun Hu

 IStructured Development

Before object-oriented computing, many people used this approach in de-
veloping software:
• Start with a structured analysis.
• Develop a modular design.
• Write procedural programs.



JJ J N I II 13/27JJ J N I II 13/27

Object Reloaded Jun Hu

 IStructured Development

Before object-oriented computing, many people used this approach in de-
veloping software:
• Start with a structured analysis.
• Develop a modular design.
• Write procedural programs.

What’s the problem? Think of building your dream house using this ap-
proach ...



JJ J N I II 13/27JJ J N I II 13/27

Object Reloaded Jun Hu

 IStructured Development

Before object-oriented computing, many people used this approach in de-
veloping software:
• Start with a structured analysis.
• Develop a modular design.
• Write procedural programs.

What’s the problem? Think of building your dream house using this ap-
proach ...

The crux of the problem is using different techniques for analysis, de-
sign and implementation. It’s very difficult to accommodate requirements
changes late in the development process,



JJ J N I II 13/27JJ J N I II 13/27

Object Reloaded Jun Hu

 IStructured Development

Before object-oriented computing, many people used this approach in de-
veloping software:
• Start with a structured analysis.
• Develop a modular design.
• Write procedural programs.

What’s the problem? Think of building your dream house using this ap-
proach ...

The crux of the problem is using different techniques for analysis, de-
sign and implementation. It’s very difficult to accommodate requirements
changes late in the development process, because it’s just so difficult to work
out what parts of the program code are affected by a change in the require-
ments.



JJ J N I II 14/27JJ J N I II 14/27

Object Reloaded Jun Hu

 IObject-orientation: A Consistent Model

Object-oriented computing allows us to use the same model throughout the entire
software development process.

• Start with an object-oriented analysis.

• Convert this into an object-oriented design.

• Convert this into object-oriented programs.



JJ J N I II 14/27JJ J N I II 14/27

Object Reloaded Jun Hu

 IObject-orientation: A Consistent Model

Object-oriented computing allows us to use the same model throughout the entire
software development process.

• Start with an object-oriented analysis.

• Convert this into an object-oriented design.

• Convert this into object-oriented programs.

As you can see, an object-oriented approach is used each step of the way. In
fact, the same object-oriented model that was developed right at the start is
used in the program code.



JJ J N I II 14/27JJ J N I II 14/27

Object Reloaded Jun Hu

 IObject-orientation: A Consistent Model

Object-oriented computing allows us to use the same model throughout the entire
software development process.

• Start with an object-oriented analysis.

• Convert this into an object-oriented design.

• Convert this into object-oriented programs.

As you can see, an object-oriented approach is used each step of the way. In
fact, the same object-oriented model that was developed right at the start is
used in the program code.

Yes, there are differences here and there to do with particular implementa-
tion details (just as an architect doesn’t worry about how the bricklayers mix
the cement), but the two models are essentially the same.



JJ J N I II 15/27JJ J N I II 15/27

Object Reloaded Jun Hu

 IRapid Application Development

• Requirements gathering
• Analysis
• Design
• Development
• Deployment



JJ J N I II 16/27JJ J N I II 16/27

Object Reloaded Jun Hu

 I Rapid Application Development IRequirements gathering

• ♥Discover Bussines Processes: Activity diagram(s).

• ♥Perform Domain Analysis: High-level class diagram and a set of meet-
ing notes.

• Identify Cooperating Systems: Deployment diagram.

• Discover System Requirements: Package diagram.

• ♥Present Results to Client



JJ J N I II 17/27JJ J N I II 17/27

Object Reloaded Jun Hu

 I Rapid Application Development IAnalysis

• ♥Understand System Usage: Use case diagram(s).

• ♥Refine the Class Diagrams: Refined class diagram.

• ♥Analyze Changes of State in Objects: State diagram.

• ♥Define the Interactions Among Objects: Sequence and collaboration
diagrams.

• Analyze Integration with Cooperating Systems: Detailed deployment di-
agram and if necessary data models.



JJ J N I II 18/27JJ J N I II 18/27

Object Reloaded Jun Hu

 I Rapid Application Development IDesign

Design and Analysis should go back and forth until the design is complete.

• ♥Develop and Refine Object Diagrams: Activity diagrams.

• Develop Component Diagrams: Component diagrams.

• Plan for Deployment: Part of the deployment diagram developed earlier.

• ♥Design and Prototype User Interface: Screen shots of the screen pro-
totypes.

• Design Tests: Test scripts.

• Begin Documentation: Document structure.



JJ J N I II 19/27JJ J N I II 19/27

Object Reloaded Jun Hu

 I Rapid Application Development IDevelopment

• Construct Code: The code.

• Test Code: Test results.

• Construct User Interfaces, Connect to Code and Test: Functioning sys-
tem, complete with user interfaces.

• Complete Documentation: System documentation.



JJ J N I II 20/27JJ J N I II 20/27

Object Reloaded Jun Hu

 I Rapid Application Development IDeployment

• Plan for Backup and Recovery: The crash recovery plan.

• Install the Finished System on Appropriate Hardware: Fully deployed
system.

• Test the Installed System: Test results.



JJ J N I II 20/27JJ J N I II 20/27

Object Reloaded Jun Hu

 I Rapid Application Development IDeployment

• Plan for Backup and Recovery: The crash recovery plan.

• Install the Finished System on Appropriate Hardware: Fully deployed
system.

• Test the Installed System: Test results.

• ♥Celebrate!



JJ J N I II 21/27JJ J N I II 21/27

Object Reloaded Jun Hu

 IA Simplified Practical Process

• Requirements gathering: Discover Business Processes
• Analysis: Identify objects/attributes/behaviors
• Analysis: Find out classes and their relations
• Analysis: Refine classes and their relations
• Analysis: Dynamic behavior of classes
• Design



JJ J N I II 22/27JJ J N I II 22/27

Object Reloaded Jun Hu

 I A Simplified Practical Process I Requirements gathering: Discover Business Pro-
cesses



JJ J N I II 23/27JJ J N I II 23/27

Object Reloaded Jun Hu

 I A Simplified Practical Process IAnalysis: Identify objects/attributes/behaviors

Work on the nouns:

and verbs in the requirements:

• go, search, lend, take, sort, print, put, do, has, have, convert, write, man-
age, access, read, preview, take a sample, reserve, give, inform, make, set
free, check the data, recommend, post, buy, operate, maintain, conclude,
browse, input

Understand System Usage: Use case diagram(s).



JJ J N I II 24/27JJ J N I II 24/27

Object Reloaded Jun Hu

 I A Simplified Practical Process IAnalysis: Find out classes and their relations



JJ J N I II 25/27JJ J N I II 25/27

Object Reloaded Jun Hu

 I A Simplified Practical Process IAnalysis: Refine classes and their relations

Class, Responsibilities, and Collaboration (CRC) Cards:



JJ J N I II 26/27JJ J N I II 26/27

Object Reloaded Jun Hu

 I A Simplified Practical Process IAnalysis: Dynamic behavior of classes

• ♥Refine the Class Diagrams: Refined class diagram.

• ♥Analyze Changes of State in Objects: State diagram.

• ♥Define the Interactions Among Objects: Sequence and collaboration
diagrams.



JJ J N I II 27/27JJ J N I II 27/27

Object Reloaded Jun Hu

 I A Simplified Practical Process IDesign

• ♥Develop and Refine Object Diagrams: Activity diagrams.

• ♥Design and Prototype User Interface: Screen shots of the screen pro-
totypes.



JJ J N I II 27/27JJ J N I II 27/27

Object Reloaded Jun Hu

 I A Simplified Practical Process IDesign

• ♥Develop and Refine Object Diagrams: Activity diagrams.

• ♥Design and Prototype User Interface: Screen shots of the screen pro-
totypes.

Iterate analysis and design.


	Introduction: What's the big deal?
	The basic OO principle
	Encapsulation
	Model Real-World Objects
	Isolate Knowledge
	Protect System from Change
	Use Behavior from Other Objects

	Inheritance
	Again, what's the good of it?
	Structured Development
	Object-orientation: A Consistent Model
	Rapid Application Development
	Requirements gathering
	Analysis
	Design
	Development
	Deployment

	A Simplified Practical Process
	Requirements gathering: Discover Business Processes
	Analysis: Identify objects/attributes/behaviors
	Analysis: Find out classes and their relations
	Analysis: Refine classes and their relations
	Analysis: Dynamic behavior of classes
	Design


