
Design Patterns (II)

DA243, Object Oriented Animals

Design Patterns

Design Patterns
Concepts which we can apply over and over

Last time
Iterator
Composite
Factory

Now more challenging patterns
Master these, and nothing will intimidate you!

Design Patterns

This time
Decorator
Visitor
(and in passing we’ll mention Strategy Pattern)

References
“Design Patterns:Elements of Reusable Object-Oriented
Software”
—E. Gamma, R. Helm, R. Johnson and J. Vlissides
And also, “The Design Patterns Java Companion”
http://www.patterndepot.com/put/8/JavaPatterns.htm
James W. Cooper

Decorator: Problem

Want to add functionality to one object
Could use inheritance
E.g., Suppose want to add layout to Containers

Then need FrameWithBorderLayout,
FrameWithGridBagLayout, FrameWithFlowLayout, etc.
Also need PanelWithBorderLayout,
PanelWithGridBagLayout, PanelWithFlowLayout, etc.
Etc.

Decorator: Problem

Multiple inheritance helps reuse code, but
Still need many, many subclasses
Multiple inheritance is messy
Java doesn’t support it anyway!

Inheritance adds functionality to all objects,
not just one

FrameWithFlowLayout

Frame FlowLayout

Solution: Composition

Rather than use inheritance use composition
Use two objects rather than one

“Favour object composition
over class inheritance”

Gamma

Helm Johnson Vlissides

Strategy Pattern

Main object composed with some
subordinate object

E.g., Frame has a Layout object
This composition is actually the Strategy pattern

Can choose an algorithm dynamically
Won’t go into details of Strategy

ComposedClass
E.g., BorderLayout

Main Class (e.g., Frame)
composedClass (e.g., Layout)
chooseComposition(e.g., setLayout())

Main object

Modifying
object

Modifying object

Main
object

E.g., Strategy

E.g., Decorator

Composing objects

Decorator “surrounds” the object it decorates

Decorator Pattern

Decorator contains object it decorates
Can substitute decorator for object it
decorates

Component

Decorator
: Component

OtherComponent

Typesetter Output:

Typesets all types of Block
Each Block has height and width

Produce output for word processor or print
driver

E.g., typeset letter ‘H’ produces output
H @ 0,0 font: italic 9pt

public interface Block {
int getHeight();
int getWidth();

}

Example:

A Glyph is a Block
A FontDecorator is a Block

Block

FontDecorator
part: Block

Glyph
c: Char

Example: Decorator

Glyphs store single characters
Typesetting program

Typesets Blocks
⇒Typesets Glyphs

How to add font, size
info to Glyphs?

R

B

Glyphs

Example:

Use a Decorator
FontDecorator contains

Font info
Size info
A Block

E.g., a Glyph R

Glyphs

Font: Comic MS
Size: 32

B

Font: Arial
Size: 28

FontDecorator

Glyph implements Block and stores a char

public class Glyph implements Block {
private char _c;

private Glyph(char c) {
_c = c;

}

public int getHeight() { return 1; }
public int getWidth() { return 1; }

}

Typesetter class does the formatting
E.g., typeset(Glyph)
H @ 0,0 font: italic 9pt

public class Typesetter {
private int _x, _y;
private int _size;
private String _font;

…
// some code that sets up position, font and size
…

public void typeset(Glyph g) {
System.out.println(g.getChar() + " @ " + _x +

"," + _y + " font: " + _font + " " + _size + "pt"
);

}

public class FontDecorator implements Block {
private Block _part;
private String _font = null;
private int _size = 0;

public FontDecorator(String font, Block part) {
_part = part;
_font = font;

}
public FontDecorator(int size, Block part) {
_part = part;
_size = size;

}

public String getFont(){ return _font; }
public int getSize() { return _size; }
public Block getPart() { return _part; }
public int getWidth() { return _part.getWidth(); }
public int getHeight() { return _part.getHeight(); }

}

Info from
contained class

[1] Psuedo-code only. Type error here since getPart() returns a Block.

Typesetting a fontDecorator extracts
fontDecorator info

Then recursively calls typeset() with contained info
Contained info could be another fontDecorator!

public class Typesetter {
…

public void typeset(Glyph g) {…}

public void typeset(FontDecorator d) {
_size = d.getSize();
_font = d.getFont();

typeset(d.getPart());
}

} Recursively call typeset()1

Usage:

But fontDecorator is itself a Block
Can nest fontDecorators!

public static void main(String[] args) {
Block b = new FontDecorator("italic",

new Glyph(‘H’)));

public static void main(String[] args) {
Block b = new FontDecorator("italic",

new FontDecorator(9,
new Glyph(‘H’)));

Decorator: Consequences

More flexible than static inheritance
E.g., decorate single objects not entire class

Avoid feature-laden classes high in class
hierarchy

Don’t have to implement all foreseeable
functionality up front

Disadvantage: lots of little classes
Hard to understand/debug!

Visitor

Complex pattern
Challenge!

Problem: want to group related functions
Don’t want to search through every class to
understand one function
E.g., to understand typesetting, have to look
through every Block class.

Problem: we want to operate on a diverse set
of classes

Each class has a different interface

Visitor: Solution

Essentially use a glorified (but elegant) switch
statement….

switch ClassType {
case Class1:

Do something…
case Class2:

Do something else…
case Class3:

Do something more…
…
}

Visitor: Solution
Except use method overloading…

…and some other trickery

visit(Class1) {
Do something…

}
visit(Class2) {

Do something else…
}
visit(Class3) {

Do something more…
}
…

Visitor: Solution

A visitor has functionality
E.g., has a visit() method say

Visitor “visits” those objects that will “accept”
Accepting object utilises functionality offered
passing reference to itself

E.g., Accepting object calls
visitor.visit(this)

Accepting
Object:bear

bear.accept(cat)

accept(visitor) {
visitor.visit(bear)

}

Visiting Object:cat

Miaow!

Typsetter Example
Typesetter offers functionality
typeset() method
Rename it visit()

Let Typesetter implement some Visitor
interface
Glyphs wants to accept that functionality

Willing to accept a “visit” from the Typesetter
All accepting classes have following code:

public class Glyph {
…

public void accept(Visitor visitor) {
visitor.visit(this);

}

Accepting
Object:Glyph

glyph.accept(typesetter)

accept(Visitor visitor) {
visitor.visit(this);

}

Visiting Object:Typesetter

typesetter:
Typesetter

Visit(Block)

typesetter:
Typesetter

Visit(Block)

glyph:
Glyph

accept(Visitor)

Do typesetting

Can be visited by many visitors

Accepters can be visited by any visitor

Accepter must implement accept() method
public void accept(Visitor visitor) {

visitor.visit(this);
}

Visitor can make multiple visits

Visitors can visit any accepting class

Visitor can make multiple visits

Visitors must simply be able to handle any
accepting class

E.g., for the typesetter example Visitor must
handle any type of Block
I.e., if there are four types of Block have:

public interface Visitor {
void visit(Glyph g);
void visit(Horizontal h);
void visit(Vertical v);
void visit(FontDecorator d);

}

Consequences

Easy to add new operations
Gathers related operations
Disadvantage: Visited (accepting) classes are
hard to subclass

Visitor must deal with subclasses correctly
Disadvantage: Breaks encapsulation

E.g., Glyph no longer manages it’s typesetting
Accepting class usually needs to make internals
visible to visitor. Breaks Info Hiding!

Summary
Remember: Decorator is simply the

name of the pattern.
It does not imply use of graphics.

Decorator
Add functionality to individual object
“Surround” object with decorator

Visitor
Gather together functionality

