Design Patterns (1)

DA243, Object Oriented Animals

Design Patterns

Design Patterns

o Concepts which we can apply over and over
Last time

o lterator

o Composite
o Factory

Now more challenging patterns
o Master these, and nothing will intimidate you!

Design Patterns

This time

o Decorator

o Visitor

o (and in passing we’ll mention Strategy Pattern)

References

o “Design Patterns:Elements of Reusable Object-Oriented
Software”

—E. Gamma, R. Helm, R. Johnson and J. Vlissides

o And also, “The Design Patterns Java Companion”
http://www.patterndepot.com/put/8/JavaPatterns.htm
James W. Cooper

Decorator: Problem

Want to add functionality to one object
o Could use inheritance

o E.g., Suppose want to add layout to Containers

Then need FrameWithBorderLayout,
FrameWithGridBaglLayout, FrameWithFlowLayout, etc.
Also need PanelWithBorderLayout,
PanelWithGridBagLayout, PanelWithFlowLayout, etc.

Etc.

Decorator: Problem

Frame FlowLayout
FrameWithFlowLayout

Multiple inheritance helps reuse code, but
o Still need many, many subclasses

o Multiple inheritance is messy

o Java doesn’t support it anyway!

Inheritance adds functionality to all objects,
not just one

Solution: Composition

"Favour object composition
over class inheritance”

= Rather than use inheritance use composition
= Use two objects rather than one

Strategy Pattern

ComposedClass

Main Class (e.g., Frame)
/ E.g., BorderLayout

composedClass (e.g., Layout)

chooseComposition(e.g., setLayout())

Main object composed with some
subordinate object

o E.g., Frame has a Layout object

o This composition is actually the Strategy pattern

Can choose an algorithm dynamically
Won'’t go into details of Strategy

Composing objects

Main object
[E.g., Strategy} —_— Moditying
object
Modifying object
Main
object — [E.g., Decorator}

Decorator “surrounds” the object it decorates

Decorator Pattern

Can substitute decorator for object it
decorates

Component

AN

OtherComponent Decorator

: Component

Typesetter Output:

Typesets all types of Block
o Each Block has height and width

public interface Block {
int getHeight ();
int getWidth ();

}

Produce output for word processor or print
driver

o E.g., typeset letter ‘H’ produces output
H @ 0,0 font: italic 9pt

Example:

A GlyphisaBlock
A FontDecoratorisaBlock

Block

7N

Glyph FontDecorator

c: Char

part: Block

Example: Decorator

Glyphs store single characters

Typesetting program
0 Typesets Blocks
0 = Typesets Glyphs

How to add font, size
iInfo to G1lyphs?

Example:

[FontDeoorator} \

Use a Decorator

_ Font: Arial
FontDecorator contains Size: 28
o Fontinfo _
] _ Font;: Comic MS B
o Size info Size: 32
0 ABlock

E.g.,a Glyph R \
[Glyphs }

public class Glyph implements Block ({
private char c;

private Glyph(char c) {

@ = @
}
public int getHeight() { return 1; }
public 1int getWidth() { return 1; }

}

Glyph Implements Block and stores a char

public class Typesetter {
private int x, y;
private int size;
private String font;

// some code that sets up position, font and size

public void typeset(Glyph g) {
System.out.println(g.getChar() + " @ " + x +
1A , 1A + _y + 1) font : (1) + _font + 1A 1A + _Size + "pt"
)
}

Typesetter class does the formatting
E.g., typeset (Glyph)
H @ 0,0 font: italic 9pt

public class FontDecorator implements Block {
private Block part;
private String font =
private int _size =

public FontDecorator(String font, Block part) {
_part = part;
_font = font;

}

public FontDecorator(int size, Block part) {
_Ppart = part;

_size = size; |nf0 frOm
} n
contained class

public String getFont () { return font; }
public int getSize () { return size; }
public Block getPart() { return part; }
public int getWidth() { return _part.getWidth() ;6 }
public int getHeight () { return _part.getHeight(); }

public class Typesetter {

public void typeset(Glyph g) {..}

public void typeset(FontDecorator d) {
~size = d.getSize();
_font = d.getFont();

typeset (d.getPart()) ; ¢

}

) {Recursively call typeset () 1}

Typesetting a fontDecorator extracts
fontDecorator info

o Then recursively calls typeset () with contained info
o Contained info could be another fontDecorator!

[1] Psuedo-code only. Type error here since getPart() returns a Block.

Usage:

public static void main(String[] args) {
Block b = new FontDecorator("italic",
new Glyph(‘H’)));

But fontDecorator isitselfa Block
o Can nest fontDecorators!

public static void main(String[] args) {
Block b = new FontDecorator("italic",
new FontDecorator(9,
new Glyph(‘H")));

Decorator: Consequences

R

More flexible than static inheritance

o E.g., decorate single objects not entire class
Avoid feature-laden classes high in class
hierarchy

o Don’t have to implement all foreseeable
functionality up front

Disadvantage: lots of little classes
o Hard to understand/debug!

Visitor

Complex pattern
o Challenge!

Problem: want to group related functions

o Don’t want to search through every class to
understand one function

o E.g., to understand typesetting, have to look
through every Block class.

Problem: we want to operate on a diverse set
of classes

o Each class has a different interface

Visitor: Solution

Essentially use a glorified (but elegant) switch
statement....

switch ClassType {
case Classl:
Do something...
case Class?:
Do something else...
case Class3:
Do something more...

Visitor: Solution

Except use method overloading...

visit(Classl) {
Do something...
}

visit(Class?2) {
Do something else...
}

visit(Class3) {
Do something more...
}

...and some other trickery

Visitor: Solution

A visitor has functionality
0 E.g.,hasavisit () method say

Visitor “visits” those objects that will "accept”

Accepting object utilises functionality offered
passing reference to itself

o E.g., Accepting object calls

visitor.visit(this)

[Visiting Object:cat }

Accepting
Object:bear

bear.accept (cat)

P

\ Miaow!
accept(visitor) { Pr=

visitor.visit (bear)

}

Typsetter Example

Typesetter offers functionality

0 typeset () method

o0 Rename it visit ()

Let Typesetter implement some Visitor
interface

Glyphs wants to accept that functionality

o Willing to accept a “visit” from the Typesetter

o All accepting classes have following code:

public class Glyph {

public void accept(Visitor wvisitor) ({
visitor.visit(this) ;

}

[Visiting Object:Typesette r}

Accepting
Object:G1lyph

typesetter:

Typesetter

glyph.accept (typesetter)

glyph:

accept (Visitor)

accept (Visitor wvisitor) {
visitor.visit(this);

}

Visit (Block)

typesetter:

Typesetter

Visit (Block)

[Do typesetting]

» Accepter must implement accept () method

public void accept(Visitor visitor) {
visitor.visit (this);

}

Visitor can make multiple visits

= Visitors can visit any accepting class

Visitor can make multiple visits

Visitors must simply be able to handle any
accepting class

o E.qg., for the typesetter example Visitor must
handle any type of Block

o l.e., if there are four types of Block have:

public interface Visitor {
void visit(Glyph g);
volid wvisit (Horizontal h);
vold visit (Vertical v);
volid visit (FontDecorator d);

}

Consequences

Easy to add new operations
Gathers related operations

Disadvantage: Visited (accepting) classes are
hard to subclass

o Visitor must deal with subclasses correctly
Disadvantage: Breaks encapsulation
o E.g., Glyph no longer manages it's typesetting

o Accepting class usually needs to make internals
visible to visitor. Breaks Info Hiding!

Summary

" Remember: Decorator is simply’rh?

name of the pattern.

It does not imply use of graphics.
\\

Decorator

o Add functionality to individual object
0 “Surround” object with decorator
Visitor

o Gather together functionality

