
UML Tutorial: Collaboration Diagrams

Robert C. Martin

Engineering Notebook Column

Nov/Dec, 97

In this column we will explore UML collaboration diagrams. We will investigate how they are drawn, how
they are used, and how they interact with UML class diagrams.

UML 1.1

On the first of September, the three amigos (Grady Booch, Jim Rumbaugh, and Ivar Jacobson) released the
UML 1.1 documents. These are the documents that have been submitted to the OMG for approval. If all
goes well, the OMG will adopt UML by the end of this year.

The differences between the UML 1.0 and UML 1.1 notation are minimal. The previous article in this
series, (September issue) has not been affected by the changes.

Dynamic models

There are three kinds of diagrams in UML that depict dynamic models. State diagrams describe how a
system responds to events in a manner that is dependent upon its state. Systems that have a fixed number
of states, and that respond to a fixed set of events are called finite state machines (FSM). UML has a rich
set of notational tools for describing finite state machines. We’ll be investigating them in another column.

The other two kinds of dynamic diagram fall into a category called Interaction diagrams. They both
describe the flow of messages between objects. However, sequence diagrams focus on the order in which
the messages are sent. They are very useful for describing the procedural flow through many objects.
They are also quite useful for finding race conditions in concurrent systems. Collaboration diagram, on the
other hand, focus upon the relationships between the objects. They are very useful for visualizing the way
several objects collaborate to get a job done and for comparing a dynamic model with a static model

. Collaboration and sequence diagrams describe the same information, and can be transformed into one
another without difficulty. The choice between the two depends upon what the designer wants to make
visually apparent.

Sequence diagrams will be discussed in a future article. In this article we will be concentrating upon
collaboration diagrams.

The interplay between static and dynamic models.

There is a tendency among novice OO designers to put too much emphasis upon static models. Static
models depicting classes, inheritance relationships, and aggregation relationships are often the first
diagrams that novice engineers think to create. Disastrously, they are sometimes the only diagrams that
they create.

In fact, a static emphasis on object oriented design is inappropriate. Software design is about behavior; and
behavior is dynamic. Object oriented design is a technique used to separate and encapsulate behaviors.
Therefore an emphasis upon dynamic models is very important.

More important, however, is the interplay that exists between the static and dynamic models. A static
model cannot be proven accurate without associated dynamic models. Dynamic models, on the other hand,
do not adequately represent considerations of structure and dependency management. Thus, the designer
must iterate between the two kinds of models, driving them to converge on an acceptable solution.

2

Example: A Cellular Phone.

Consider the software that controls a very simple cellular telephone. Such a phone has buttons for dialing
digits, and a “send” button for initiating a call. It has “dialer” hardware and software that gathers the digits
to be dialed and emits the appropriate tones. It has a cellular radio that deals with the connection to the
cellular network. It has a microphone, a speaker, and a display.

From this simple spec, we might be tempted to create a static model as shown in Figure 1.

It is very hard to argue with this static model. The composition relationships reflect, very clearly, the
specification above. Indeed, the telephone “has” all the listed components. But is this the correct static
model? How would be know?

One criterion is to compare the static model to the real world. Certainly Figure 1 passes this test. In the
real world, a cellular phone “has” all the components shown above. However, experienced object oriented
designers know that, while this test is essential, it is not sufficient. Figure 1 does not show the only static
model that matches the real world of the cellular telephone. In order to choose between the many possible
static models a more sensitive test is needed.

Specifying Dynamics.

How does the cellular phone work? To keep things simple, lets just look at how a customer might make a
phone call. The use case for this interaction looks like this:

Use case: Make Phone Call
1. User presses the digit buttons to enter the phone number.
2. For each digit, the display is updated to add the digit to the

phone number.
3. For each digit, the dialer generates the corresponding tone and

emits it from the speaker.
4. User presses “Send”
5. The “in use” indicator is illuminated on the display
6. The cellular radio establishes a connection to the network.
7. The accumulated digits are sent to the network.
8. The connection is made to the called party.

This is simplistic, but adequate for our purposes. The use case makes it clear that there is a procedure
involved with making a call. How do the objects in the static model collaborate to execute this procedure?

Let’s trace the process one step at a time. The first thing that happens when this use case is initiated is that
the user presses a digit button to begin entering the phone number. How does the software in the phone
know that a button has been pushed?

Telephone Cellular Radio

DisplayMicrophoneSpeakerButton

Dialer

*

Figure 1: Static model of a Cellular Phone

3

There are a variety of ways that this can be accomplished; but they can all be simplified to having a
Button object that sends a digit message. Which object should receive the digit message? It seems
clear that it should be the Dialer . The Dialer must then tell the Display to show the new digit, and
must tell the Speaker to emit the appropriate tone. The Dialer must also remember the digits in the list
that accumulates the phone number. Each new button press follows the same procedure until the “Send”
button is pressed.

When the “Send” button is pressed, the appropriate Button object sends the Send message to the
Dialer . The Dialer then sends a Connect message to the CellularRadio and passes along the
accumulated phone number. The CellularRadio then tells the Display to illuminate the “In Use”
indicator.

This simple procedure is depicted in the collaboration diagram in Figure 2.

Syntax

First, let’s look at the syntax of the diagram above. The rectangles in this diagram depict objects, not
classes. You can tell that they are objects because they are underlined. In UML, something that is
underlined is an instance; whereas something that is not underlined is a template from which an instance
can be created. Notice the object on the lower left entitled Send:Button . In UML the full name of an
object is a composite that includes the name of its class. The name of the object and the name of the class
are separated by a colon. Notice that all the other objects in the diagram are anonymous; they have no
name, and their class is shown with a colon in front.

The lines connecting the objects are called links. Links are instances of associations. You are not allowed
to create a link on a collaboration diagram if there is no corresponding association, (or aggregation, or
composition) on a class diagram. Remember this rule, we’ll come back to it later.

The arrows represent messages; and are labeled with their names, sequence numbers, and arguments. The
name of a message corresponds to the name of a member function. That member function must exist in the
class that the receiving object is instantiated from. The sequence numbers show the order in which the
messages occur. The sequence numbers are nested so that you can tell which messages are sent from
within other messages.

For example, message 2:Send() is sent to the Dialer . As a result the Dialer begins executing a
member function. Before that function returns, it sends message 2.1:Connect(pno) to the

:Button : Dialer : CellularRadio

: Speaker

: Display

2 .1 :Connec t (pno)

2 .1 .1 : InUse()

1* :D ig i t (code)

1 .1 :D isp layD ig i t (code)

1 .2 :Em i tTone (code)

2 :Send()

Send:Button

Figure 2: Collaboration Diagram of “Make Phone Call” use case.

4

CellularRadio . The CellularRadio then sends message 2.1.1:InUse() to the Display .
Thus, the dot structure of the sequence numbers make it easy to see the procedural nesting of the messages.

Message 1*:Digit(code) has an asterisk in order to denote that it may occur many times before message 2.
UML defines way to use this syntax to represent loops and conditions that are beyond the scope of this
article. We’ll come back to such details in a subsequent article.

Reconciling the static model with the dynamic model.

It should be clear that the structure of the objects in the dynamic model (Fig 1) does not look very much
like the structure of the classes in the static model (Fig 2). Yet by the rule we talked about above, a link
between objects must be represented by a relationship between the classes. Thus, we have a problem.

The problem could be that our dynamic model is incorrect. Perhaps we should force the dynamic model to
look like the static model. However, consider what such a dynamic model would look like. There would
be a Telephone object in the middle that would receive messages from the other objects. The
Telephone object would respond to each incoming message with outgoing messages of its own.

Such a design would be highly coupled. The Telephone object would be the master controller. It would
know about all the other objects, and all the other objects would know about it. It would contain all the
intelligence in the system, and all the other objects would be correspondingly stupid. This is not desirable
because such a “god” object becomes highly interconnected. When any part of it changes, other parts of it
may break.

I prefer the dynamic model shown in Figure 2. The concerns are decentralized in a reasonable fashion.
Each object has its own little bit of intelligence, an no particular object is in charge of everything. Changes
to one part of the model do not necessarily ripple to other parts.

But this means that our static model is inappropriate. It should be changed to look like Figure 3. Notice
that I have demoted all the composition relationships to associations. This is because none of the
connected classes share a whole/part relationship with the others. The Dialer is not part of the Button
class, The CellularRadio is not part of the Dialer , etc. Notice also that I have specified the
direction of navigation. The dynamic model makes it very clear which class needs to navigate to which
other classes. I have also added the member functions into the class icons; again because the dynamic
model made them so apparent.

Button Dialer

+Digit(code : int)
+Send()

Display

+DisplayDigit(code : int)
+InUse()

CellularRadio

+Connect(number : PNO)

Speaker

+EmitTone(code : int)

Figure 3: Reconciled static model

5

You might feel uncomfortable with this static model because it does not seem to reflect the real world as
well as the first. After all, we have lost the notion of the telephone containing the buttons and the display,
etc. But that notion was based upon the physical components of the telephone, not upon its behavior.
Indeed the new static model is based upon the real world behavior of the telephone rather than upon its real
world physical makeup.

We also lost a few classes. The Telephone and Microphone classes played no part in the dynamic
model, and so have been removed. It may be that some other dynamic scenario will require them. If that
happens, then we will put them back.

This points out the fact that many dynamic models usually accompany a single static model. Each dynamic
model explores a different variation of a use case, scenario, or requirement. The links between the objects
in those dynamic models imply a set of associations that must be present in a static model. Thus, dynamic
models tend to vastly outnumber static models.

Scrutinizing the static model

Our static model has a few problems. For example, why should a class named Button know anything
about a class named Dialer ? Shouldn’t the Button class be reusable in programs that don’t have
Dialer s?

We can solve this problem by employing the ADAPTED SERVER pattern as shown in Figure 4. Now the
Button class is completely reusable. Any other class that needs to detect a button press simply derives
from ButtonServer and implements the pure virtual ButtonPressed function. If, like Dialer , the
class must detect many different Button objects, ADAPTERS can be used to catch the ButtonPressed
messages and translate them.

Another problem with the static model in Figure 3 is the high coupling of the Display class. This class will
be the target of an association from many different clients. Those of you who recall my column entitled
“The Interface Segregation Principle” (ISP) [C++ Report, Aug, 1996. This document is also available in
the ‘publications’ section of http://www.oma.com] will understand that an unwarranted dependency exists
between the CellularRadio class and the Dialer class. If one of the methods of Display needs to

Button ButtonServer

+ButtonPressed()

SendButtonAdapter DigitButtonAdapter

Dialer

Figure 4: ADAPTED SERVER pattern for decoupling Button from Dialer

6

be altered because of the needs of Dialer , then CellularRadio will be affected; at very least, by an
unwarranted recompile.

To solve this problem, we can segregate the interfaces of the Display class as shown in Figure 5.

Iterating the dynamic model

Clearly these perturbation will have an effect upon the dynamic model. Thus, it will have to be changed as
shown in Figure 6. This model shows how the adapters translate the ButtonPressed messages into
something that the Dialer can understand. It also shows the segregation of the display interfaces. Note
that the object named display appears twice, but with different class names. This indicates that display is
derived from more than one class. Thus, the class name of the object tells the reader which interface the
sender is depending upon.

Conclusion

We have completed two iterations of our static and dynamic model of a cellular phone. The first iteration
was simply a guess. In the case of the first static model, the guess was pretty bad. However, after the
second iteration we had resolved the disparity between the two models and had begun to explore more
subtle design issues. In a real project, this iteration would continue until the designer was satisfied that
both models were appropriately tuned.

Static models are necessary but insufficient for complete object oriented designs. A static model that is
produced without the benefit of dynamic analysis is bound to be incorrect. The appropriate static
relationships are a result of the dynamic needs of the application. UML Collaboration diagrams are a good
way to depict dynamic models and compare them to the static models that must support them.

In future columns, we will continue to explore the wiles of UML. Among other things we will discuss
UML’s rich notation for finite state machines. We will explore how race conditions in concurrent systems
can be detected with sequence diagrams. And we will demonstrate the facilities within UML that allow it
to be extended.

Dialer CellularRadio

DiallerDisplay

+DisplayDigit(code : int)

CRDisplay

+InUse()

Display

Figure 5: Interface Segregation of the Display

7

Digit :Button

Send:But ton

:Digi tButton
Adapter

:SendBut ton
Adapter

:Dialler

:Speaker
:Cellular

Rad io
display

:CRDisplay
display:Dial ler

Display

1* :But tonPressed()

2 :But tonPressed()

1.1:Dig i t (code)

2 .1 :Send()

1 .1 .2 :Emi tTone(code)

2 .1 .1 :Connec t (pno)

2.1.1 .1 : InUse()
1 .1 .1 :Disp layDig i t (code)

Figure 6: Iterated Dynamic Model

