Pattern Recognition: An introduction

Jun Hu

October, 2007

Designed Intelligence
Department of Industrial Design
Eindhoven University of Technology

Patterns in physics and chemistry

Patterns in biology

Patterns in nature

Patterns in Astronomy

Pattern in seismic data

Patterns in sound

Patterns in faces

- A pattern is an object, process or event that can be given a name.
- A pattern class (or category) is a set of patterns sharing common features.

What is pattern recognition?

- Our ability
 - to recognize a face,
 - to understand spoken words,
 - to read handwritten characters
- all these abilities belong to the complex processes of
- pattern recognition
 - The act of taking in raw data and taking an action based on the "category" of the pattern.

Goal of Pattern recognition

- Recognize Patterns. Make decisions about patterns.
- Examples:
 - Visual is this person happy or sad?
 - Speech did the speaker say "Yes" or "No"?
 - Physics— is this an atom or a molecule?

Applications of Pattern Recognition

OCR

- Handwritten digit/letter recognition
- Printed texts: reading machines for blind people,

Biometrics:

- Face recognition
- Speech recognition
- Finger prints recognition.
- Interpreting DNA sequences

Medical diagnosis

- X-Ray, EEG, EKG
- Military applications
 - Automated Target Recognition (ATR)
 - recognition from aerial or satelite photographs
- Spam detection
- Smell recognition (e-nose sensor networks)

Approaches

Statistical PR

 based on underlying statistical model of patterns and pattern classes.

Structural (syntactical) PR

 pattern classes represented by means of formal structures as grammars, automata, strings, etc.

Connectionist's approach

- classifier is represented as a network of cells modeling neurons of the human brain.
- (Neural networks)

Basic concepts

Feature vector $\mathbf{x} \in X$

- A vector of observations (measurements).
- X is a point in feature space X.

- Cannot be directly measured.
- Patterns with equal hidden state belong to the same class.

Task

- To design a classifer (decision rule) $q: X \to Y$ which decides about a hidden state based on an onbservation.

An example: Statistical PR

- Fish recognition using optical sensing
- Salmon vs. Sea bass

- First take some sample images to extract features that could help to distinguish them
 - Length
 - Lightness
 - Width
 - Number and shape of fins
 - Position of the mouth
 - etc...

Process

Length?

Lightness?

- More than one feature?
 - Adopt the lightness and add the width
 - Sea bass is typically wider than salmon.

Solution 1

- Underfitting
 - Shall we add another feature?

Solution 2

Better. But what about generalization?

Solution 3

 Good fit. Hope it will perform well on novel patterns.

Components of PR system

- Sensors and preprocessing.
- A feature extraction to create discriminative features good for classification.
- A classifier.
- A teacher provides information about hidden state -- supervised learning.
- A learning algorithm sets PR from training examples.

Feature extraction

<u>Task:</u> to extract features which are good for classification.

Good features:

- Objects from the same class have similar feature values.
- Objects from different classes have different values.

"Good" features

"Bad" features

Feature extraction methods

Feature extraction

Feature selection

Problem can be expressed as optimization of parameters of featrure extractor $\phi(\theta)$.

Supervised methods: objective function is a criterion of separability (discriminability) of labeled examples, e.g., linear discriminat analysis (LDA).

Unsupervised methods: lower dimesional representation which preserves important characteristics of input data is sought for, e.g., principal component analysis (PCA).

Classifier

A classifier partitions feature space *X* into **class-labeled regions** such that

$$X = X_1 \cup X_2 \cup ... \cup X_{|Y|}$$
 and $X_1 \cap X_2 \cap ... \cap X_{|Y|} = \{0\}$

The classification consists of determining to which region a feature vector **x** belongs to. Borders between **decision boundaries** are called decision regions.

Representation of classifier

A classifier is typically represented as a set of discriminant functions

$$f_i(\mathbf{x}): X \to \Re, i = 1, ..., |Y|$$

The classifier assigns a feature vector **x** to the *i*-the class if

$$f_i(\mathbf{x}) > f_j(\mathbf{x}) \quad \forall j \neq i$$

Discriminant function

Bayesian decision making

• The Bayesian decision making is a fundamental statistical approach which allows to design the optimal classifier if complete statistical model is known.

<u>Definition:</u>	Obsevations	X	A loss function	$W: Y \times D \rightarrow R$
	Hidden states	Y	A decision rule	$q:X\to D$
	Decisions	D	A joint probability	$p(\mathbf{x}, y)$

Task: to design decision rule q which minimizes Bayesian risk

$$R(q) = \sum_{y \in Y} \sum_{x \in X} p(\mathbf{x}, y) W(q(\mathbf{x}), y)$$

Wrap-up

- Statistical and Syntactical approaches
- Neural networks: non-linear statistical
- Every step is important:

