DBDO04 Learning Robots

Jelle Dekker s070085
Laura van Geel s070089
Jasper de Kruiff s070094
Vincent Klerkx s071143

Department of Industrial Design
TU/e, March 2011

Table of Contents

00 1B 1 111 3
0 O 0o T 10 ot [) o VOO 3
1.2 INTLIAL COMCEPTL cuuiirierierirrerssrsss s ssss s sess s s bbb bR 3
1.3 Final concept ‘Clean-0-Botscooererereeseesssessessssessssesssssssessssssssssssessssesssssssssssssessssesssssssssssessasessas 4
1.3 T PlatfOrT e e ieeieeseeeeeseeseceseesees e ssseessessse st seesse s esse s bR R R bR 5
08 1B 0 1) 6
B2 T TE=0 i 0 L 0 T P04 PP 6
28 1101 0] (55 43 =) oL U (o) OSSPSR 7
08 1B 0 1)l 9
S 700 1254 0 1= =L () U PPN 9
R J0 2 05011 U0) PP 9
L8 1B)0 1) o 13
4.1 Improvements of the developed SYSTEIM......c.o e remeermees s sesssssssssssessans 13
4.2 Learning algorithms and a deSign ProJeCt..... e seessssseessssssssssesssssssssssssssseses 13
APPENAIX A COUE..urmimmrmrnrmsmsmsniasssssssissssssssssssssssssssssassssssssassssssssassssssssssasse s sssasss sesssmsaR SR SR SRR R SR SR SRR RS RS R R RERRR R RS 14
S L = = oI o o (=P 14
A2 PrOCESSING COUE. .. cuieurieuienreesseteeessesecsseessessseesse s e s es s s bbb s s s s R R s R 18
PN I 100100 = o) o W 00 Yo 00T 24

Jelle Dekker, Laura van Geel, Jasper de Kruiff, Vincent Klerkx 2/29

Chapter 1

1.1 Introduction

The aim of this module was to develop a system that resulted in autonomous and intelligent behaviour. To
develop such a system learning algorithms were introduced. Three different types of learning algorithms
were explained; Unsupervised learning, reinforcement learning and supervised learning.

In the case of unsupervised learning a system is able to make different clusters by it’s self, there is no
correcting factor that influences the system.

Reinforcement learning is when you guide that system, the system performs an action and a reward is given
for correct behaviour, and no reward for incorrect behaviour.

Supervised learning is when you give direct feedback to all the actions that the system performs.

In this report we will show how we implemented unsupervised learning algorithm through theory and
practice. We do this by means of developed concept, in our case the ‘Garbage remove’ concept. Input from
the systems environment will be used to make a closeting between different types of objects that can be
found. As a result of the clustering a trained algorithm is able to identify different objects in the given
environment. Further in this report we explain the concept, the platform which is used and the chosen
learning algorithm and how it was implemented.

1.2 Initial concept

In the beginning of this module we were handed the AdMoVeo robot (see 1.3 The Platform) as a platform to
interface. The initial concept was mainly based on the specifications and the expected performance and
opportunities of the AdMoVeo. The goal was to apply reinforcement learning on individual agents to enable
object detection using its distance sensor to sense the length of objects and use this to identify different
types of trash by unsupervised learning to the agents. On top of that, reinforcement learning is used to learn
the agents to help each other.

First mission: two types of trash
1

o] L
ea - % 94

If possible before deadline: four types of trash

- : 3
..... . - -
. i

Figure 1 Concept overview

Jelle Dekker, Laura van Geel, Jasper de Kruiff, Vincent Klerkx 3/29

The concept:
1 Two different types of trash are represented by foam blocks with two different colors: red
(big) blocks and green (small) blocks
2 One robot can push away green blocks
3 Red blocks are too heavy for one robot to push
4 When a robot encounters a red block, it calls the other robots
5 When other robots receive the call, they move towards it
6 Multiple robots push away red blocks
7 The robot which called for help sends a thanks-command to the helping robot, which stimulates
learning to help other agents
8 Multiple types of trash are represented by foam blocks with multiple colours (multiple weights)

1.3 Final concept ‘Clean-0-Bots’

The concept was to make the robots remove garbage from a given space. A space was defined in which the
robots were expected to remove garbage and thereby leave other robots where they are.

The expected learning behaviour was that the system would be able to identify garbage from itself; we used
three different types of garbage paper clots, soda cans and cups. By means of unsupervised learning the
system is able to cluster the different types of objects, after it has been trained. In the training stage the
system makes different clusters for each type of object that the system can distinguish. After this learning
process the system is able to recognise the garbage and make a distinction between garbage and robots. The
robot will now move towards the garbage, collect it and move it towards its corresponding garbage bin.

Jelle Dekker, Laura van Geel, Jasper de Kruiff, Vincent Klerkx 4/29

1.3 The Platform

The platform used in this module was a combination of a
robot and an overhanging webcam that work together as
an integrated system.

FigFigure 2 AdMoVeo

1.3.1 AdMoVeo robot

The AdMoVeo robot is an educational robot developed within the faculty of Industrial Design at the
Eindhoven University of Technology to teach first year students the basics of programming. In total it contains
8 sensors and 4 actuators:

- three infrared distance sensors

- two light sensors

- two sound sensors

- a line follower

- two geared DC motors (for two independent wheels)

- a buzzer

-an RGB Led

The robot is controlled by an Arduino board that communicates to a regular computer using either USB or a
wireless Xbee communication module. It is powered by four high capacity rechargeable AA batteries.

We made a custom addition to the chassis of the robot: a front facing cardboard scoop that allows the robot
to collect and transport small pieces of trash.

1.3.2 Webcam

As the sensors on the robot itself were not sufficient for our needs, an overhanging webcam was used to act
as the ‘eyes’ of the entire system. We choose a Microsoft LifeCam VX-800 for its picture quality and low costs.
It operates at 15 frames per second at a maximum resolution of 640 x 480 pixels (0,3 megapixel).

The webcam was used to gain an overview of the environment, to detect and identify different types of trash.
It also enabled us to track and guide the AdMoVeo robot to its targets.

Jelle Dekker, Laura van Geel, Jasper de Kruiff, Vincent Klerkx 5/29

Chapter 2

2.1 Learning Algorithm

Unsupervised learning

— - o
a '

: Unsupervised Tearning;

An unsupervised learning algorithm is able to make a clustering between the provided inputs without
receiving rewards. Such a system can be followed by coded action that have to be performed when the input
is related to one of the clusters or a supervised or reinforced learning algorithm can be used.

In this learning algorithm the system will make an internal image of clusters of the different types of garbage.
For our system we used the neural gas algorithm.

The following formula is that basis of this algorithm:

41 —k/A t

Ti Nz —wy)

u ik

ot
=w; +€-€

Given a probability distribution P(x) the data of vectors x. Per each time step t a data vector chosen from P is
presented. Then the distance to the data vector x is determent, i0 gives the index of how close the vector. 1

In the formula € is the adaptation step size and A is the so-called neighbourhood range. € and A are reduced
with increasing t. after many adaptations the vectors cover the data space with a low error rate. !

“The adaptation step of the neural gas can be interpreted as gradient descent on a cost function. By adapting
not only the closest feature vector but all of them with a step size decreasing with increasing distance order,
compared to k-means clustering a much more robust convergence of the algorithm can be achieved. The
neural gas model does not delete a node and also does not create new nodes.”;

The advantage of the learning algorithm is that it is possible to place more garbage of the same type in the
environment and the robot would automatically go to right location. Also it would be easier to learn the
system to recognize other types of garbage by using the learning

algorithm, and remove this garbage from the scene.

1 http://en.wikipedia.org/wiki/Neural_gas, retrieved 2011, March11

Figure 3 Webcam

Jelle Dekker, Laura van Geel, Jasper de Kruiff, Vincent Klerkx 6/29

http://en.wikipedia.org/wiki/Gradient_descent
http://en.wikipedia.org/wiki/Gradient_descent
http://en.wikipedia.org/wiki/Cost_function
http://en.wikipedia.org/wiki/Cost_function
http://en.wikipedia.org/wiki/K-means_clustering
http://en.wikipedia.org/wiki/K-means_clustering
http://en.wikipedia.org/wiki/Neural_gas
http://en.wikipedia.org/wiki/Neural_gas

2.2 Implementation

2.2.1 Set-up

O ;

Webcam view

Legend

O Webcam

= @ AdMoVeo
@B Garbage

Figure 4 Set-up Overview

In the image above an illustration is given of how the set-up looked like for our system. On the table a white
paper was placed to determent the area in which the robot could navigate and to have to highest contrast
between the background and garbage in the images. Whenever a robot moves out of the range of the
camera the robot is stopped preventing it from driving of the table.

Jelle Dekker, Laura van Geel, Jasper de Kruiff, Vincent Klerkx 7/29

Training Realtime Simulation

Webcam Webcam Webcam
Matlab Matlab Matlab
Processing Processing
nalysis ar i
AdMoVeo Simulation
Webcam Matlab object analysis Simulation

Figure 5 Overview implementation

Webcam

The input that the system gets is captured by means of the webcam. Be fore starting the system has to
recalibrate the background a background image needs to be captured. Then the garbage can be placed in the
environment and a real-time image can be captured.

Matlab

Matlab is used to capture the images of the webcam, and to process the images into data that can be read by
the neural gas algorithm. To do so first the difference between the background image and the new scene is
calculated, leaving only the garbage and robot on the screen. Blob detection is used to find the different
artefacts in the scene, these artefacts are cropped and resized into separate images for further processing.
Matlab takes the median HSV for each pixel of these cropped samples. These variables could be identified by
means of the learning algorithm. The blob detection also was able to subtract the coordinates of the object
in the real image.

Processing

Matlab would communicate the coordinates of the garbage to processing to control the AdMoVeo and to
place the garbage in out simulation. We could move the robot towards the garbage and make it clean the
garbage in the right location.

Chapter 3

3.1 Expectation

We expect that the system is able to make a difference between the robots and the garbage. After identifying
the garbage the system should be able to move the robot towards the garbage and place the garbage in the
garbage bin (in the corner of the area).

When the system is able to identify paper clots the robot will move towards a paper clot and place the paper
clot at a predefined location in the environment.

3.2 Execution

Before we could make the system a smart learning system a training set was developed which could be used
for training the algorithm. In the training set there were four objects that could be distinguished, the
AdMoVeo, soda cans, paper cups and paper clots. Figure 6 shows a larger version of the images that were
used as training set for the algorithm.

Kk Paper cup

Soda can

S]] | —
]| —

When the system is activated the system will first ask you to take an image of the background (see figure 7 &
8). Then the garbage and robot can be placed in the scene, a new image has to be taken. From these two
images we take the absolute difference for further processing. This new image is used for blob detection, all
objects seen in the image are separated and all objects below a certain size are ignored to remove noise from
the data. These images are then cropped to contain only the object and resized to 20*20pixels.

Figure 6 Training set

Figure 7 Figure 8

3.2.1 How to analyse the data for the neural gas algorithm?

Several methods have been tried in combination with the Neural Gas Algorithm to make a distinction
between different types of objects (cups, cans, clots and robots). First simply all pixels were read in Matlab,
this made all images so different that the Neural Gas algorithm couldn't make a useful distinction. A second

Jelle Dekker, Laura van Geel, Jasper de Kruiff, Vincent Klerkx 9/29

try was to use all pixels but only black/white data, so each pixel was set to black or white, depending on the

threshold set for this conversion. This resulted in too similar images for the different objects. A third method
used was the contour of the object, for this a function was used in Matlab that made all pixels black with the
exception of the contour of the blob it had detected. This made the images too similar even for human eyes

because the noise from shadows made all contours very much alike.

One method that was presented during the lectures was to count b/w pixels in horizontal and vertical
directions, which is a way of looking at the image in an entirely different view than when looking at all pixels.
This works well to determine different orientations of the same object, if you already know the object.
Unfortunately for us we don't know the orientation of the image before analyzing it so this method doesn't
work to identify our different kinds of objects in the scene that can be oriented in many ways.

Figure 9

One thing that stood out when viewing the resulting image from the background and scene is the colour of
the objects. There is a difference between the range of colours within the same class of object and between
the different classes. Using the image on itself in the Neural gas algorithm didn't work, there was too much
variation in how the individual pixels made the objects. However instead of looking at the separate Red,
Green and Blue (RGB) values for each pixels, we can also convert the image to HSV, which will give the Hue
(tint), Saturation and Value (brightness) of each pixel. A slight difference of light can change the red, green
and blue-value of a pixel but may only change the brightness (V) of the HSV-colourmap of the same pixel.
This can be seen when we look at the variables made in Matlab of the images, the saturation and especially
the hue are more consisted in the cropped images than the lightness. The "noise" that the light conditions
and camera recording cause in the RFB-colourmap is reduced because it has been isolated from the other
colour information in the image.

Now using 20x20 pixels and recording 3 different values on each pixel would give us an array of 1200
numbers for each image to work on in the Neural Gas algorithm, we want to categorize 4 different, quite
simple, objects. Especially with the picture quality and resizing after taking the smallest possible crop that
contains the whole blob, these objects consist mainly of a single hue/colour/plane, with some noise from the
background that is still part of the crop. The goal is to remove the noise as much as possible, and pass on less
data to the Neural Gas algorithm. To do this we take the median of the HSV-map of the 20*20px image, this
returns the median value for each column, resulting in 20 numbers describing the hue of the image, 20
numbers for the saturation and 20 numbers for the brightness. Possible the 'mean' may also have been used,
but 'median' appears to be more consistent probably because with the 'mean' the background present in the
image has a bigger influence on the resulting number for the column.

To train the network an image was taken using Matlab as described earlier, however the resulting image with
the absolute difference of the scene and the background is not ready to use as a training set for the network.
But this image was used as a base for the training set, editing the crops of the objects in many ways, playing
with the rotation, lightness and contrast of the images to make a more complete training set. In the end this

resulted in 28 images for the 4 different categories, on average 7 per category. To test the network the data
from the training set was used as a test set to see if the objects, because of the limited amount of samples
for the training set, the training of the network had to be tweaked to take more steps (500 in the end) before
it managed to separate all categories in the right way.

After the training and test the trained network could be used in the 'real' situation. For this the exact same
steps are taken as before regarding the visual input. By loading the trained network it’s known which
categories in the Neural Gas correspond with which objects. Based in this 4 text files are made where the
coordinates of the centroids of the blobs are stored, each category (cans, cups, clots and robots) is stored in
it’s own text file, ready to be read by Processing for the next step.

eno Figure 333
- i A S 5 P32 A # LA s s File Edit View Insert Tools Desktop Window Help
} 9 » DEde M RAUPEHE- S 08 am
File Edit View Insert Tools Desktop Window Help ' Iy Tow PEVIET DoW E : = e
- n 3 - Bl * L <
4% K * O9RL- QA 08 Q | N o> 1IIVHTDWE 4 [P
| - 2 - »
.) | £
| 35
vs | o o] Matlab learning algorithm
1
' has detected 3 types of trash
%) 4.®NO Figues k 3 kR ;
) Figur | Fil Ed Vie Ins: Toc Desk Winc He and the robot from images.
|~|\|.T'Dw-|. 'd e hld "k -
25 | € Neural gas, 500 steps
1< = 2 AR R R R AR R
2 i 9 . -—
x =2 5
15 L
o
A | 1 . I . I . J
1 15 2 25 3 3s 4 a5 s 0 5 10 15 20 25 30
Figure 10

3.2.3 Using the data from the network to control robot/simulation
The files with coordinates that came from Matlab are loaded into processing, to keep the implementation

more manageable here only two objects are used instead of four. Both a simulation and a control system for
the robot were developed, the simulation was made to be able to clarify the concept without the difficulties

added by controlling the robot using the webcam as input.

Controlling the AdMoVeo
The second version in processing uses the webcam, OpenCV and the actual AdMoVeo to move the trash to

predetermined locations. The system in Processing knows where the trash is based on the coordinates from
the analysis done in Matlab (imported using the text-files). It tracks the robots position using the webcam, it

can do this without learning by simply ignoring all smaller objects. The biggest difficulty encountered is the
movement of the AdMoVeo, it doesn’t know its direction or speed. This is solved by making the AdMoVeo

move, then calculating the difference in position, trying to get closer in both the x and y-direction. In the
execution this wasn’t done using a learning algorithm, but Q-learning would probably have been a suiting

implementation.

Jelle Dekker, Laura van Geel, Jasper de Kruiff, Vincent Klerkx 11/29

Simulation

In the simulation the trash is placed on a field according to the coordinates from the Matlab text-files. After
that agents (robots) are loaded that will move the trash to the right locations. The learning algorithm is used

only to identify the trash in the scene here.

1 Unsupervised training

a Webcam

b Matlab

Figure 11

Jelle Dekker, Laura van Geel, Jasper de Kruiff, Vincent Klerkx

2 SImulation

a Webcam
b Matlab

¢ Processing

d Simulation

12/29

Chapter 4

4.1 Improvements of the developed system

The way the Clean-o-bot system was developed could be improved in the future. Now it was hard to direct
the AdMoVeo in the direction of the waist as well as it was hard to make it move the garbage to the right
location. If we had implemented the Q-learning system it would have been possible for the system to learn
what the shortest route was all by itself. Currently the system did this by trying what was possible and if it
was wrong try another option Q-learning would have done the same but the system would be able to learn
when it was wrong and not try that again.

4.2 Learning algorithms and a design project

The learning algorithms could be of great advantage to the development of intelligent products for society. It
opens up possibilities for system that can adapt to changes without having to reprogram the system again.
For a design project it means that you can make a system that is able to adapt by itself which will give
interesting outcomes, like for instance you could create emergent behaviour.

In case of Q-learning you could also develop a system that is able to adapt to changes over time. For instance
if you have a system that can recognise different people who are in a room and adapt the atmosphere to that
person such a system would be able to identify and learn if there is a new person in that room. A learning
system gives room for all sorts of personalised systems and advice giving services.

It can be said that learning systems have a close relation to Ambient Intelligence and could be developed into

interesting products that are of use for society. For instance our concept could be scaled to a bigger scale and
used in the harbour for locating containers and trucks.

Jelle Dekker, Laura van Geel, Jasper de Kruiff, Vincent Klerkx 13/29

Appendix A Code

A.1 Matlab code

Train Network

%vade for the DBDO4 Learni ng Robots Mdul e

%vith help fromthe "Neural Gas"-algorithm provided by |ecturer Enilia |I. Barakova
%lel | e Dekker, Laura van Ceel, Jasper de Kruiff, Vincent Kl erkx

%-eb- Mar 2011, Industrial Design, TU e

%-unction to train the network, it takes images as input, calculates the
%redi an Hue- Saturation and feeds that data to the neural network for

%unsuper vi sed cat egori zati on.

%€pen file to store ing data
fid=fopen('train data.txt',"w);

%40l der where the inmages are stored

folder = '"IngFol der/3";

% gecl are anmount of inages
n = 28;

for i =1 : n

% Get the base file nane.

baseFil eName = sprintf (' %l.jpg", i);

% Conmbine it with the folder to get the full filenane.
full Fil eName fullfile(folder, baseFil eNane);

%€=t the medi an Hue-Saturation (hsv) fromthe inage
inmg_tenp = inread(full FileNane);

hsv=r gb2hsv(ing_t enp);

i mg=nedi an(hsv) ;

%€ onvert data to a string and renbve unnecessary spaces
a = nun@str(ing);
for k=1:px
a = strrep(a, ' ', " ');
end

%start a newline and wite ing data
fprintf(fid, \n");
fprintf(fid,a);

end

fclose=(fid);
clear;

%% oad the data on ings, use as input for neural gas

load train data.txt;
Trai ningSet _Clusters = neural _gas_cluster (train_data, 4, 500);

Jelle Dekker, Laura van Geel, Jasper de Kruiff, Vincent Klerkx

14/29

Analyze Scene

%bade for the DBDO4 Learning Robots Mdul e

%\ th help fromthe "Bl obsDenp"

% htt p: // www. mat hwor ks. conmi mat | abcentral /fil eexchange/ 25157- bl obsdenp)
%lel | e Dekker, Laura van Ceel, Jasper de Kruiff, Vincent Kl erkx

%-eb- Mar 2011, Industrial Design, TU e

%.i ve/online version of the ing analysis. This takes two screenshots from
% video input (background and scene), conpares these, finds the objects
% bl obs), extracts these fromthe images and then uses these crops for the
%l assification input. The catagories are then witten to 4 files, each
%ontaining the coordinates of a category of objects found

disp('Starting intelligent scene analyzer...');

vid = videoinput (' nacvi deo', 1, "' YUY2_640x480");
set (vid, ' ReturnedCol or Space', ' rgh");
set(vid, " TriggerRepeat', Inf);

Y%start (vid);

preview(vid);

%Ask for first screenshot
reply = questdl g(' Make background ing?' ,' Systemready...', '"Yes', "No', 'Yes');
| oop=true;
whil e | oop==true
if strenpi(reply, 'Yes')

bg = getsnapshot(vid); % ake screenshot

di sp(' Background i nage captured...");

| oop=fal se; %xit |oop

end
if strcnpi(reply, 'No')

reply = questdl g(' Make background ing? ,' Systemready...', '"Yes', "No', 'Yes');
end

end

%Ask for second screenshot
reply2 = questdlg('ls the scene ready? ,'BG made..."', 'Yes', '"No', 'Yes');
| oop=true;
whil e | oop==true
if strcnpi(reply2, 'Yes')
b = getsnapshot(vid); % ake screenshot

di sp(' Scene captured, starting analysis...");

stop(vid);

| oop=fal se; %xit |oop
end
if strcnpi(reply2, 'No')

reply2 = questdlg('ls the scene ready? ,'BG nmade..."', "Yes', "No', 'Yes');
end

end

%Cal cul ate difference between i nages and make a binary version
diff_im=inmabsdiff(b,bg);

di ff_bw = inRbw(diff_imO0.2);

bi narylmage = infill (diff_bw, 'holes');

%rake a grayscal e version, and find connectivity in the binary version
originallmage = rgb2gray(diff_im;
| abel edl mage = bw abel (bi naryl mage, 8);

%use the two version to find blobs in the inmage, and count them
bl obMeasurenents = regi onprops(| abel edl mage, original lmage, "all");

Jelle Dekker, Laura van Geel, Jasper de Kruiff, Vincent Klerkx 15/29

http://www.mathworks.com/matlabcentral/fileexchange/25157-blobsdemo
http://www.mathworks.com/matlabcentral/fileexchange/25157-blobsdemo

nunber O Bl obs = si ze(bl obMeasurenents, 1);

%open txt files to wite the coordinates into
robot s=fopen(' robots.txt', " w);
clots=fopen('clots.txt', " w);
cans=fopen('cans.txt"'," ' w);

cups=fopen(' cups.txt', " w);

bl obECD = zeros(1, numnber O Bl obs);
% Print header line in the conmmand w ndow.

fprintf(l, Blob # Mean Intensity Area Perineter Centroid D aneter\n');
% Loop over all blobs printing their neasurenents to the command wi ndow
for k = 1 : nunber OBl obs % Loop through all bl obs.

% Find the nean of each blob. (R2008a has a better way where you can pass the
original inage

% directly into regionprops. The way bel ow works for all versions including earlier
versions.)

t hi sBl obsPi xel s = bl obMeasurenent s(k). Pi xel I dxList; % Get |ist of pixels in current
bl ob.

meanGL = nmean(ori gi nal | mage(thi sBl obsPi xel s)); % Find nean intensity (in original
i mage!)

meanG.2008a = bl obMeasur ement s(k). Meanl ntensity; % Mean again, but only for version >=
R2008a

bl obArea = bl obMeasur enment s(k) . Ar ea; % Get ar ea.

bl obPeri met er = bl obMeasur enent s(k). Peri neter; % Get perineter.

bl obCentroi d = bl obMeasur enment s(k) . Centr oi d; % Get centroid.

bl obECD(k) = sqrt(4 * bl obArea / pi); % Conput e ECD - Equi val ent

Circular Dianeter.

%ilter out noise, only blobs over a certain size are considered
if (blobPerineter > 80)
fprintf(l, #%2d %d7.1f %d1.1f 98. 1f 98. 1f 9%8.1f % 8.1f\n', k, meanG., bl obArea,
bl obPeri meter, bl obCentroid, blobECD(k));

%t the current blobs box and crop it

t hi sBl obsBoundi ngBox = bl obMeasur enment s(k) . Boundi ngBox;
subl mage = incrop(di ff_im thisBl obsBoundi ngBox);

subl mage = inresize(sublnmage, [20 20]);

figure, inshow subl mage);

%et the nmedian Hue-Saturation (hsv) fromthe inage
hsv=r gb2hsv(subl nage) ;
i mg=nedi an(hsv);

%furn data into string and renpbve unnecessary spaces
a = nunstr(ing);
for k=1:20
a =strrep(a, ' ', ' ');
end

%ut data in a '"txt' file
fid=fopen('test _data.txt','w);
fprintf(fid,a);

fclose=(fid);

%read this txt file so raw text is nmade into 1x60 double
| oad test data.txt;
for Scan = 1:1:1
test _data_class = neural _gas_cl ass(Trai ningSet_Cl usters,test_data(Scan,:));
%l assifies the test vectors to the known cl asses

%determ ne the class (based on categorization after training)

Jelle Dekker, Laura van Geel, Jasper de Kruiff, Vincent Klerkx 16/29

%and put the coordinates of the objects in the right files.

if test_data_class==
fprintf(cups,' %2. 1f\to%. 1f"', bl obCentr oi d);
fprintf(cups,' \n');

end

if test_data_class==2
fprintf(clots, %. 1f\to%. 1f"', bl obCentr oi d);
fprintf(clots, ' \n")

end

if test_data_class==3
fprintf(cans,' %2. 1f\to%. 1f"', bl obCentr oi d);
fprintf(cans, ' \n");

end

if test_data class==4
fprintf(robots, 9. 1f\t9%2. 1f', bl obCentroi d);
fprintf(robots, ' \n");
end
end
end
end

%l ose the text files
fcl ose=(robots);
fclose=(clots);

fcl ose=(cans);

fcl ose=(cups);

Jelle Dekker, Laura van Geel, Jasper de Kruiff, Vincent Klerkx 17/29

A.2 Processing Code
Robot Control

/1 Made for the DBDO4 Learning Robots Mdul e

// Based on the OpenCV exanple 'blobs', http://ubaa.net/shared/ processi ng/ opencv/
/1Jell e Dekker, Laura van Geel, Jasper de Kruiff, Vincent KlIerkx

/| Feb- Mar 2011, Industrial Design, TU e

/1 Programto control the novenents of an AdWbVeo robot to pick up different types
/1l of trash and transport themto correspondi ng dunpsites. Coordinates fromtrash
/lare read fromtext files (generated with MathLab) and robot control uses bl ob
//detection fromthe QpenCV library.

i mport processing.serial.*;

import nl.tue.id.creapro.adnoveo. *;
i mport hypernedi a. vi deo. *;

import java.awt.*;

AdMbVeo adnoveo;

float Ycur = 0O; /lcurrent Y-coordinate of robot

float Yold = 0O; //old Y-coordinate of robot

float Xcur = O; //current X-coordinate of robot

float Xold = O; /1ol d X-coordinate of robot

float Xtar = O; /I X-coordi nate of current target

float Ytar = 0; /1Y-coordinate of current target

int target =0 /lcurrent target index (0 = dunpsite A, 1 =

dunpsite B, 2 gargabe 1, 3 = garbage 2, 4 = garbage 3, etc)

int targetdd = 0; /I previous target

float X = 0; /ltenporary storage of x coordinate robot
float Y = O; /ltenporary storage of y coordi nate robot
String[] linesA |inesB; /lused for processing of text files
float[][] coordinates; /I coordi nates of trash and dunpsites

bool ean hasf ound=f al se; //used for robot detection

OpenCV opencyv;

int w= 640;
int h = 480;
int threshold = 80;

voi d setup() {
//load text file with coordi nates of clots

linesA = loadStrings("clots.txt");
//1oad text file with coordi nates of cans
linesB = |l oadStrings("cans.txt");

int coorlLength=linesA. | ength+linesB.|ength+2;
coordi nates = new float[coorLength][2];
/I define dunpsite A coordinates (for clots)

coordinates[0][0] = 560;

coordinates[0] [1] = 200;

/1 define dunpsite B coordinates (for cans)
coordi nates[1][0] = 60;

coordinates[1][1] = 420;

/11 oad clots coordinates

for (int i=0; i<linesA length; i++) {
String[] pieces = split(linesAli], "\t');
coordi nates[i+2][0] = float(pieces[0]);
coordi nates[i +2] [1] fl oat (pieces[1]);

Jelle Dekker, Laura van Geel, Jasper de Kruiff, Vincent Klerkx 18/29

}

/11 oad cans coordi nates

for (int a=0; a<linesB.length; a++) {
String[] pieces2 = split(linesB[a], '"\t');
coordi nates[a+2+(linesA. length)][0] = float(pieces2[0]);
coordi nates[a+2+(linesA length)][1] = float(pieces2[1]);

}
target = 2;

/linitialize OpenCV
printin("Initialising OpenCV..");
size(2*w+40, h+20);

opencv = new OpenCV(this);
opencv. capt ure(w, h);
del ay(15000);

/linitialize AdVbVeo robot

printIn("Initialising Robot..");

adnoveo = new AdMoVeo(this, "/dev/tty.usbserial - A6005u0b"); |/ sel ect correct COM port
adnoveo. get Left Motor (). forward();

adnoveo. get R ght Mot or (). forward();

adnoveo. getLeft Motor (). on();

adnoveo. get R ght Motor (). on();

}

void drawm) {
get Position();

/1if robot is found on canera, continue with cleanup
i f (hasfound==true) ({
moveRobot () ;

}
/lelse try various nmanouvres to get back on the screen
el se {

del ay(1000);

get Position();

whi | e(hasf ound==f al se) {
adnoveo. get Lef t Mot or () . backwar d() ;
adnoveo. get Ri ght Mot or () . backwar d() ;
adnoveo. get Left Mot or () . set Power (150) ;
adnoveo. get R ght Mot or () . set Power (150) ;
del ay(250);
get Position();
adnoveo. get Left Mot or (). forward();
adnoveo. get Ri ght Mot or () . backward();
adnoveo. get Left Mot or () . set Power (150) ;
adnoveo. get R ght Mot or () . set Power (150) ;
del ay(150);
get Position();
adnoveo. get Left Motor (). forward();
adnoveo. get Ri ght Mot or (). forward();
adnoveo. get Left Mot or () . set Power (150) ;
adnoveo. get Ri ght Mot or () . set Power (150) ;
del ay(150);
st opRobot () ;
del ay(250);

}

}
}

/1 Gets current coordinates of robot using blob detection from OQpenCVv
voi d getPosition() {

Jelle Dekker, Laura van Geel, Jasper de Kruiff, Vincent Klerkx 19/29

background(0);
opencv. read();
/ opencv.flip(OpenCV. FLI P_HORI ZONTAL)

i mmge(opencv.inmage(), 10, 10); /1 RGB i nage
i mge(opencv.image(OCpenCV. GRAY), 20+w, 10); /1 GRAY inmage
i mge(opencv.image(OCpenCV. MEMORY), 10, 20+h); // inmge in nenory

opencv. absDi ff();
opencv. t hreshol d(t hreshol d);

/'l working with blobs
Bl ob[] bl obs = opencv. bl obs(2600, w*h/3, 20, true); //mninal blobsize is 2600, so
only robot will be detected as bl ob

noFi l I ();

pushMatri x();
transl ate(10, 10);
for(int i=0; i<blobs.length; i++) {
Rect angl e boundi ng_rect = bl obs[i].rectangl e;
float area = blobs[i].area
float circunference = blobs[i].length
Point centroid = blobs[i].centroid
Point[] points = blobs[i].points

//put current x-coordinate of robot in X
X = centroid.x;
//put current y-coordinate of robot inY
Y = centroid.y;

//Determ ne the position of the robot when the systemis initiated
if (hasfound==fal se) {

Xcur X;

Ycur Y;
}

/'l rectangle

noFi I I ();

stroke(blobs[i].isHole ? 128 : 64);

rect (boundi ng_rect.x, bounding_rect.y, bounding_rect.w dth, bounding_rect.height);

noFill();
stroke(0, 0, 255);
if (points.length>0) {
begi nShape();
for(int j=0; j<points.length; j++) {
vertex(points[j].x, points[j].y);
}
endShape(CLOSE) ;

noSt r oke() ;

}
popMatri x();

//if robot is detected on canera, hasfound=true
if (blobs.length>0) {
hasf ound=t r ue

}
/ /el se hasfound=fal se
el se {

hasf ound=f al se

Jelle Dekker, Laura van Geel, Jasper de Kruiff, Vincent Klerkx 20/29

}
}

/I moves the robot to the current target when detected on canera
voi d moveRobot () {

//stop robot and get current position

st opRobot () ;

del ay(50);

get Position();

//save ol d coordinates and | oad the current ones

Yol d = Ycur;
Xol d = Xcur;
Xeur = X;
Ycur =Y,

//load the target coordi nates
Xtar = coordinates[target][0];
Ytar = coordinates[target][1];

//if current location is quite close to target |ocation, target has been reached
if (abs(Xcur - Xtar) < 60.0 & abs(Ycur - Ytar) < 60.0) {
/1if target was a piece of garbage, turn on blue LED

if (target>targetdd) {
adnoveo. get Bl ueLed() . set Power (255) ;
adnoveo. get RedLed() . set Power (0) ;
target d d=t ar get ;
get Position();
}
/1if target was a dunpsite, turn on red LED and turn around
else if(target<2) {
adnoveo. get RedLed() . set Power (255) ;
adnoveo. get Bl ueLed() . set Power (0) ;
adnoveo. get Left Mot or () . backwar d() ;
adnoveo. get Ri ght Mot or () . backward();
adnoveo. get Left Mot or () . set Power (200) ;
adnoveo. get Ri ght Mot or () . set Power (200) ;
del ay(1000);
get Position();
adnoveo. get Left Motor (). forward();
adnoveo. get R ght Mot or () . backward();
adnoveo. get Lef t Mot or () . set Power (250) ;
adnoveo. get Ri ght Mot or () . set Power (250) ;
del ay(150);
get Position();
}
st opRobot () ;
println("Destination Reached!");
//determ ne the new target (if any)
get Target ();
}
/1if the target has not yet been reached nove closer to the target
el se {
//move slightly forward
adnoveo. get Left Motor (). forward();
adnoveo. get R ght Mot or (). forward();
adnoveo. get Left Mot or () . set Power (150) ;
adnoveo. get Ri ght Mot or () . set Power (150) ;
del ay(300);
get Position();

//the clever part that controls the actual novenents of the robot
/1if current x-coordinate of the robot is closer to the target than |ast check,

Jelle Dekker, Laura van Geel, Jasper de Kruiff, Vincent Klerkx 21/29

/I but y-coordinate is further away, action is required

if ((abs(Xtar-Xol d)<abs(Xtar-Xcur))&&(abs(Ytar-Yold)>abs(Ytar-Ycur))) {

//through | ogic we determ ne whether the robot should nove |eft

situation

if (Xcur>Xold &% Ycur<Yold) {
goLeft();

}

el se i f(Xcur>Xold && Ycur>Yold) {
goRi ght () ;

}

el se if(Xcur<Xold && Ycur<Yold) {
goRi ght () ;

el se if(Xcur<Xold && Ycur>Yold) {
goLeft();
}
}

or right in this

/1if current y-coordinate of the robot is closer to the target than |ast check

/'l but x-coordinate is further away, action is required

el se if((abs(Xtar-Xol d)>abs(Xtar-Xcur))&&(abs(Ytar-Yold)<abs(Ytar-Ycur))) {

//through | ogic we determ ne whether the robot should nove |eft

situation

}

if (Xcur>Xold && Ycur>Yold) {
goLeft();

}

el se if(Xcur>Xol d && Ycur<Yold) {
goRi ght () ;

}

el se i f(Xcur<Xold && Ycur>Yold) {
goRi ght () ;

el se if(Xcur<Xold && Ycur<Yold) {
goLeft();
}

}

or right in this

/1if both x and y coordinates are further away fromthe target than | ast check, nake a
u-turn
el se if((abs(Xtar-Xol d)<abs(Xtar-Xcur))&&(abs(Ytar-Yold)<abs(Ytar-Ycur))) {

uTurn();

}
}

/I makes the robot go |eft
voi d goLeft() {

}

get Position();

adnoveo. get Left Mot or () . backwar d() ;
adnoveo. get R ght Mot or (). forward();
adnoveo. get Lef t Mot or () . set Power (150) ;
adnoveo. get Ri ght Mot or () . set Power (150) ;
del ay(50);

getPosition();

/I makes the robot go right
void goRight () {

get Position();

adnoveo. getLeft Motor (). forward();
adnoveo. get R ght Mot or () . backward();
adnoveo. get Lef t Mot or () . set Power (150) ;
adnoveo. get Ri ght Mot or () . set Power (150) ;
del ay(50);

get Position();

Jelle Dekker, Laura van Geel, Jasper de Kruiff, Vincent Klerkx

22/29

}

/I makes the robot turn 180 degrees

void uTurn() {
get Posi tion();
adnoveo. getLeft Motor (). forward();
adnoveo. get Ri ght Mot or () . backward();
adnoveo. get Left Mot or () . set Power (150) ;
adnoveo. get Ri ght Mot or () . set Power (150) ;
del ay(1000);
get Posi tion();
adnoveo. getLeft Motor (). forward();
adnoveo. get R ght Mot or (). forward();
adnoveo. get Lef t Mot or () . set Power (150) ;
adnoveo. get Ri ght Mot or () . set Power (150) ;
del ay(100);
get Position();

}

/I makes the robot stop

voi d stopRobot () {
adnoveo. get Lef t Mot or () . set Power (0) ;
adnoveo. get Ri ght Mot or () . set Power (0) ;

}

//determnes the current target of the robot
void getTarget() {
/1if previous target was trash
if (target>1) {
/1if not all clots are cleaned up
if (target<(linesA length+2)) {
// make current target dunpsite A (for clots)

t ar get =0;
}
/lelse, if all clots are cleaned up
el se {
/I make current target dunpsite B (for cans)
tar get =1,
}
}
el se {

/1if previous target was a dunpsite
// make current target the next piece of trash
target =target d d+1;
}
}

//required for OpenCV
voi d keyPressed() {
if (key==" ') opencv.remenber();

}

/lrequired for OpenCV

public void stop() {
opencv. stop();
super . stop();

}

Jelle Dekker, Laura van Geel, Jasper de Kruiff, Vincent Klerkx

23/29

A.3 Simulation Code

/' Made for the DBDO4 Learni ng Robots Mdul e
/1Jell e Dekker, Laura van Geel, Jasper de Kruiff, Vincent Kl erkx
/| Feb- Mar 2011, Industrial Design, TU e

/I Programto control the novenents of virtual agents to pick up different types
/1of trash and transport themto correspondi ng dunpsites. Coordinates of trash
/lare read fromtext files (generated with MathLab)

/ldecl aration of variables; variables are explained throughout the code
import seltar.notion.*;

TrashA[] trashA;

Agent[] teamAgents = new Agent[4];

int trashbinSize = 125

int selectedTrash
int sel ect edAgent
int currentTrashA
String[] |inesA
String[] linesB
float[][] coordi nates;

0;
0;
0,

Pl mage i ngA,;
Pl mage i ngB
Pl mage i ngC

/linitialization of values for variables
voi d setup()
{

/1size of screen is set to 6400730

si ze(640, 730) ;

snmoot h() ;

franeRat e(90) ;

/11inesA and |linesB are arrays which hold the coordinates for the instances of the two
types of trash

/lthe content of these arrays is variable and defined by two external .txt files

/I'here the content of the two .txt files is |oaded into arrays |inesA and |inesB

linesA = | oadStrings("coordinatesA txt");

linesB = | oadStrings("coordinatesB.txt");

//inmgA and i mgB hold the images for the two types of trash, and i ngC hol ds the image for
t he agents

i rgA = | oadl nage("bli kj e. png");

i mgB = | oadl mage(" propj e. png");

i mgC = | oadl mage(" AdnoveoTopvi ew. png") ;

/la float variable is created to hold the coordinates of each instance when call ed

coordinates = new float[|inesA. | ength+linesB.length][2];

/1x trash instances are created; x is defined by the total ampunt of instances of the
two types of trash

trashA = new TrashA[| i nesA. | engt h+l i nesB. | engt h];

//trash instances of type A are initialized; anpbunt of instances is variable and defined
by the content of the
/l.txt file which is |oaded into the array |inesA (coordinatesA txt)
/1the .txt file holds the coordinates of the instances of 'linesA ; inside this .txt
file the x-value and y-val ue
/1 of each instance is separated by a TAB ('\t'), and the index# of each instance is
separated by a RETURN
for (int i=0; i<linesAlength; i++) {
/lan array of strings called 'pieces' is created to hold the x- and y-coordi nates of
each instance i separately
String[] pieces = split(linesAli], "\t');
/l each instance i of trashA has an x-value, defined by the first float in the two-
di nensi onal array 'coordinates
coordinates[i][0] = float(pieces[0]);

Jelle Dekker, Laura van Geel, Jasper de Kruiff, Vincent Klerkx 24/29

/leach instance i of trashA has an y-value, defined by the second float in the two-
di nensional array 'coordinates
coordinates[i][1] = float(pieces[1]);
//the x- and y-coordi nates of each instance i are printed, to enable error tracing
println(coordinates[i][0]);
printin(coordinates[i][1]);
}
//trash instances of type B are initialized; anpbunt of instances is variable and defined
by the difference between the
//total length of both .txt files (linesA+linesB), and the length of the first .txt file
(l oaded into |inesA),
//which results in the length of the second .txt file (which was | oaded into |inesB)
for (int i=linesA length; i<linesA |length+linesB.length; i++) {
//an array of strings called 'pieces' is created to hold the x- and y-coordinates of
each instance i separately
String[] pieces = split(linesB[i-linesA length], "\t');
/'l each instance i of trashA has an x-value, defined by the first float in the two-
di nensional array 'coordinates
coordinates[i][0] = float(pieces[0]);
// each instance i of trashA has an y-value, defined by the second float in the two-
di nensi onal array 'coordinates
coordinates[i][1] = float(pieces[1]);
//the x- and y-coordi nates of each instance i are printed, to enable error tracing
println(coordinates[i][0]);
printin(coordinates[i][1]);

}

/las long as the variable selectedTrash is snaller than the total anobunt of trash
i nstances (the Ilength of the array coordi nates),
//trashA i nstances and Agent instances are created (this neans it is inpossible to have
nore Agent instances than trash instances,
//which is a point of weakness in this sinmulation)
for (int selectedTrash = 0; selectedTrash < coordi nates.|ength; selectedTrash ++) {
trashA[sel ect edTrash] = new TrashA(coordi nat es[sel ectedTrash][0], coordi nates
[sel ect edTrash] [1] +125);
//the Agents are inserted randomy into the space in between the two 'trashbins
t eamAgent s sel ect edAgent] = new Agent (randonm(w dt h), randon{trashbi nSi ze, hei ght-
trashbi nSi ze), sel ectedAgent);
/1if selectedAgent is 1, this nmeans the first Agent instance is used and assigned to
the trash instance which is created at
//the monent; if selectedAgent is 2, this neans the second Agent instance is used and
assigned to that trash instance
//when the variable int selectedAgent is greater than the total anpunt of Agent
instances, it is reset to prevent that no Agent instance
//can be found to assign the trash instance to; by resetting sel ectedAgent we nake
sure the upcomng trash instance is assigned to the
//first Agent instance and the counting process will start again, as long as the
vari abl e sel ectedTrash is smaller than the tota
//amount of trash instances
sel ect edAgent =(sel ect edAgent +1) % eamAgent s. | engt h;
}
//the variable currentTrashA is used to make the system aware of which trash instance
shoul d be renpoved by which Agent instance
/leach tine a trash instance is created, currentTrashA is set to the index# of the trash
instance which is created, divided
/1 (using the nodul us operator '%) by the total amount of Agent instances
//this neans every tine a trash instance is created, inmediately one of the Agent
instances is assigned to it
current TrashA = sel ect edAgent ;
//the variable int currentTrashA is printed to enable error tracing
println(current TrashA)

}

Jelle Dekker, Laura van Geel, Jasper de Kruiff, Vincent Klerkx 25/29

voi d draw()

{
/ I background color is set to black
background(0);

//the function displayTrashbins() is called to display the trashbins
di spl ayTrashbi ns();

//if variable int currentTrashA is snaller than the anpbunt of instances of trash of type
A, trash is displayed
if (currentTrashA<trashA. length) {

/las long as variable int selectedtrash is smaller than the total amount of instances
of trash of type A trash is displayed as type A

for (int selectedTrash = 0; selectedTrash < linesA |length; selectedTrash ++) {

trashA[sel ect edTrash] . di spl ayA() ;

}

/las long as variable int selectedTrashB is bigger than the total amount of instances
of trash of type A and snaller than the total amount of trash instances (linesA + |linesB),
trash is displayed as type B

for (int selectedTrashB = linesA |length; selectedTrashB < |inesA. | ength+linesB.!|ength;
sel ectedTrashB ++) {

trashA[sel ect edTrashB] . di spl ayB() ;
}

}

/las long as variable j is smaller than the total amunt of Agent instances (the |length of
the array 'teamAgents'),
/1 Agent instances are displayed
for (int j =0; j < teamAgents.length; j ++) {
teamAgent s[j]. display();
}

/1if variable int currentTrashA is bigger than the total ampunt of trash instances (if all
trash i nstances are renoved),
//the displayA and di splayB instances are called to prevent nullpointer errors and to nake
sure the programw || keep
/11 ooping instead of crash
if (currentTrashA>=trashA.length) {
for (int i =0; i <linesAlength; i ++) {
trashA[i].displayA();

}
for (int s =1linesA length; s < linesA length+linesB.length; s ++) {
trashA[s]. displayB();
}
}
}

/lclass for constructing the Agent instances
cl ass Agent
{

int grabState = 0;

Motion m

int a;

/I when Agent instances are created, they are assigned an x-value, a y-value and a variable
to determ ne which trash instances to renove
Agent (float X, float Y, int assignedTrash)

/1the movenment of each Agent is stored inside variable mof class Mtion
(seltar.motion is an external class downl oaded fromthe Processing website)

m = new Motion(X Y);

/lthe variable to determ ne which trash instance to renove is called

a

Jelle Dekker, Laura van Geel, Jasper de Kruiff, Vincent Klerkx 26/29

a = assi gnedTrash;

}

voi d fol l owTrashA() {
//if ais smaller than the total anpbunt of trash instances, notion mof the current
Agent instance will follow the currently selected trash instance
if (a <trashA length) {
m fol |l owTo(trashA[a].x,trashAl a].y);
m wr ap(0, O, wi dt h, hei ght);
m nove();
}
/1if ais bigger than the total anmpbunt of trash instances (if all trash is renoved),
the current Agent instance will retrieve grabState 2 (nove to the m ddle)
el se
if (a > (trashA length)-1) {
grabState = 2;
}

}

//the grabState of the current Agent instance is defined
voi d checkBaggage() {
//if ais smaller than the total anpbunt of trash instances, the function
defineG abState is called
if (a <trashA length) {
defineGabState();
}
/1if a is bigger than the total ampunt of trash instances, the variable int grabState
is set to 2
el se
if (a > (trashA length)-1) {
grabState = 2;
}
}

//the grabState of the current Agent instance is further defined
voi d defineG abState() {
/1if the current x-state and the current y-state of the current Agent instance are
within a circle of 15 pixels around the trash instance
/1it should renove ('if the current Agent has grabbed the right trash instance'),
grabState is set to 1 ('nove to trash')
if(mgetX() > ((trashAla].x)-15) & mgetX() < ((trashAla].x)+15) & & mgetY() >
((trashAla].y)-15) & magetY() < ((trashAla].y)+15)) {
grabState = 1;
}
/1if the y-state of the current trash instance (the trash instance which the Agent
instance is currently renoving) is in between 600
/land 800, this neans it is inside the trashbin and grabState is set to 2 ('nove back
to middl e of stage')
if(trashAla].y > 600 & trashAla].y < 800) {
grabState = 2;
}
/1if the y-state of the current trash instance (the trash instance which the Agent
instance is currently renoving) is in between O
/land 100, this neans it is inside the trashbin and grabState is set to 2 ('nove back
to middl e of stage')
if(trashAla].y < 100 & trashAla].y > 0) {
grabState = 2;
}
/1if an Agent instance has noved a trash instance into a trashbin (if grabState is 2)
and if it is back in the mddle of the stage,
/lgrabState is set to O ('look for trash instances')
if(mgetX() > (320-15) & & mget X() < (320+15) && magetY() > (365-15) & & magetY() <
(365+15) && grabState == 2) {

Jelle Dekker, Laura van Geel, Jasper de Kruiff, Vincent Klerkx 27/29

grabState = 0;
/1a new trash instance is assigned to be renoved
current TrashA = current TrashA + 1;
a=current TrashA;
}
}

/lactions are assigned to the possible states the variable int grabState can take
voi d enabl eMove() {
//the state of grabState is checked and nodified if needed
checkBaggage() ;
/1if grabState is 0, this nmeans the current Agent instance is 'looking for the current
trash instance' but has not found it yet
if (grabState==0) {
/las long as grabState is 0, the current Agent instance will nove towards the
current trash instance
fol | owTrashA();
}
/1if grabState is 1, this nmeans the current Agent has 'grabbed' the current trash
obj ect
if (grabState==1) {
/1if ais smaller than the anpbunt of trash instances of type A, the Agent instance
wi Il nmove the trash instance towards trashbin A
if (a <linesA length) {
m f ol | owTo(400, 650) ;
m wr ap(0, 0, wi dt h, hei ght);
//the trash instance of type Ais 'sticked to' the Agent instance as |long as the
Agent instance is noving towards trashbin A
trashAla]l.x = mgetX();
trashAla]l.y = mgetY();
m nove();
}
/1if a is bigger than the anmount of trash instances of type A this neans the
sel ected trash instance is of type B, and so the Agent instance
/Iwill nove the trash instance towards trashbin B
if (a >=1linesA length) {
println(currentTrashA);
m f ol | owTo(400, 0);
m wr ap(0, 0, wi dt h, hei ght);
//the trash instance of type Bis 'sticked to' the Agent instance as long as the
Agent instance is noving towards trashbin B
trashAla]l.x = mgetX();
trashAlal.y = mgetY();
m nove();
}
}

/lif grabState is 2, this nmeans the trash instance has successfully been dropped into
the right trashbin, and the current Agent instance wll
// move back to the mddle of the stage
if (grabState==2) { //
m f ol | owTo(320, 365);
m wr ap(0, 0, wi dt h, hei ght);
m nove();
}
}

//this is the main function in which all the sub-functions of the current Agent instance
are called
voi d display()
{
dr awect or (20) ;
enabl eMove();

}

Jelle Dekker, Laura van Geel, Jasper de Kruiff, Vincent Klerkx 28/29

//this nethod actually draws the Agent instances; wi thout this function the trash
instances will be renoved but the
/1 Agent instances will be é&invisiblei
voi d drawMector (fl oat scayl) {
stroke(200);
float arrowsize = 10;
//the Agent instance is pointed towards the current trash instance
pushMat ri x();
translate(mget X(), mgetY());
rotate(mv.getDirection());
float len = mv.getVelocity()*scayl;

/'l Draw three lines to nake an arrow (draw pointing up since we've rotate to the
proper direction)

i mage(i nmgC, 0- 20, 0- 18);

line(0,0,len,0);

line(len,0,len-arrowsi ze, +arr owsi ze/ 2);

line(len,O,len-arrowsize, -arrowsi ze/ 2);

popMat ri x();

/lclass for constructing the trash (TrashA) instances; the nane TrashA is universal and is
not related to the type of trash
class TrashA {

/1 TrashA's vari abl es
float x,y;

/1 TrashA constructor; an x-value and a y-value is assigned to each trash instance
TrashA(fl oat tenpX, float tenpY) {
X = tempX;
y = tenpy;
}

//when the function displayA is called, the instance will be displayed as i ngA (which
holds the file "blikje.png')
voi d displayA() {
i mage(i nOA X,Y);
}

//when the function displayB is called, the instance will be displayed as ingB (which
holds the file 'propje.png')
voi d displayB() {
i mage(imyB, x,y);
}
}

//function for displaying both trashbins
voi d di splayTrashbins() {
stroke(128);
fill (#FFEFCS);
strokeWei ght (2);
//variable trashbinSize is used to easily change the size of both trashbins w thout
having to change the entire code
//the first trashbin is constructed as a rectangle w th col or (#FFEFCS6)
rect (0+20, 0+20, wi dt h-40, t rashbi nSi ze) ;
fill (#FF2600);
//the second trashbin is constructed as a rectangle with col or (#FF2600)
rect (20, hei ght -trashbi nSi ze- 20, wi dt h- 40, tr ashbi nSi ze) ;

Jelle Dekker, Laura van Geel, Jasper de Kruiff, Vincent Klerkx 29/29

